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1 Key Predictions

• Vast income difference across countries cannot be fully explained by dif-
ferences in inputs of capitals, at least quantitatively.

• Saving rate and technology are both exogeneous, while both turn out to
be really important to growth.

2 Key Assumptions

• Y = F (K,AL), where A is the effective labor unit, a measure of labor
productivity, can be also called labor-augmenting technology. The specifi-
cation has the desirable property Herrod-neutrality, that allows the model
to converge to a steady-state capital to output ratio K

Y . This matches bet-
ter with the fact that there is no trended change in the ratio over a long
period of time. Alternatively, it is called Hicks neutrality if Y = AF (K,L).
The reason why it is called Hicks neutral is that the cost-minimizing factor
inputs ratio K

L is a constant under different scales of production target.
In another specification, the technology can be assumed to be capital-
augmenting, which is Y = F (AK,L). This is some times called Solow
neutral.

• CRS constant return of scale. F (λK, λAL) = λF (K,AL). The CRS as-
sumption has a wide range of important implications. First of all, the
production capacity is not constrained by a limited supply of natural re-
sources, i.e. population, lands, and physical space. Second, there is suffi-
cient market competition so that there are not many freely profitable op-
portunities that can be easily exploited by firms. Third, the marginal cost
of production is constant. The firm cannot simply push the marginal cost
all the way down by producing more and more products to earn infinitely
positive profits. Fourth, the CRS assumption allows the nice property as
described by Euler Theorem, i.e., the factor income is a constant share of
total output in perfect competition.
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There is another virtue of CRS. We can always normalize the aggregate
production function with two inputs into a normalized version with only
one input. Most commonly, we have F (K,AL) = ALF ( KAL , 1), by defining
K
AL = k as the per effective labor unit. Now we have F (K, 1) = f(k), the
dynamics of the economy can be fully captured by the evolution of capital
per effective labor unit. This is as if we equally divide the total capital K
into AL islands and each island gets capital k. For CRS, the economies
should produce exactly the same amount as the original economy.

Lastly, with CRS production the elasticity of substitution of different fac-
tors is equal to one. The factor demand increases by one-to-one manner.

3 Model Specifications

• Cobb-Douglass production function. F (K,AL) = Kα(AL)1−α. Notice
with the C-D form, labor-augmenting, capital-augmenting and Hicks nea-
tural becomes the same.

F (K,AL)︸ ︷︷ ︸
Labor augmenting

= Kα(AL)1−α = A1−αKαL1−α︸ ︷︷ ︸
Hicks neatural

= A(
K

A
)αL1−α = A(AinvK)αL1−α︸ ︷︷ ︸

Capital augmenting

• Continuous time. In the continuous-time setting, the growth rate of some
variables can be either understood as the first order derivative with respect
to time t divided by its current level, or its log growth. For instance, see
the following law of motion of aggregate capital K:

gK =
K̇

Kt
=
∂Kt

∂t

1

Kt
=⇒ ∂lnK

∂t
=
∂lnKt

∂Kt

∂Kt

∂t︸ ︷︷ ︸
By Chain Rule

=
1

Kt
K̇ =

gKKt

Kt
= gK

Also, we know the growth rate of a variable, then its future level a time
interval of ∆t from now is

Kt+∆t = Kte
∆tgK

To see why taking log on both sides gives

ln(Kt+∆t) = ln(Kt) + ∆tgK ⇐⇒ ln(Kt+∆t)− ln(Kt) = ∆t
K̇

Kt
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4 Equilibrium and Dynamics of the Model

• Steady State. From an aggregate perspective, labor force and productivity
growth expand the total production over time. In order to achieve a bal-
anced growth where total output Y grows by a constant rate, it requires
that the total capital accumulation K matches with the growth of AL.
From per effective labor perspective, this means the per effective labor
capital stays constant. Two forces prevent this from happening. First,
population growth and technology growth makes the denominator grow
over time, thus diluting capital assigned to each unit of effective labor.
Second, capital depreciates. In order to keep k constant, the new accumu-
lation capital sf(k) needs to compensate for the dilution of k. This pins
down the steady-state capital stock per effective labor.

sf(k) = (n+ g + δ)k ⇒ k∗ =
s

n+ g + δ

1/(1−α)

Notice the steady-state capital per effective level is only determined by
parameters independent from the initial level of capital stock, labor force,
and productivity, etc. It only has to do with the growth rate of different
factors, the share of capital in the production function, saving rate and
depreciation.

Lower saving rate s, faster labor force growth n, technology growth g
and depreciation δ all lower steady-state capital stock. Also, with smaller
the importance of capital in the production function, measured by α, k∗

becomes smaller.

Steady-state production converges to a constant level and increases with
α and saving rate.

y∗ = (
s

n+ g + δ
)α/1−α

As the per effective labor output is constant in steady-state, the total
output just scales up by the growth rate of labor force and technology.

ln(Yt) = αlnKt + (1− α)(At + Lt)

Ẏ

Yt
=
∂lnYt
∂t

= α
lnKt

∂t
+(1−α)

∂lnAt
∂t

+(1−α)
∂lnLt
∂t

= (α+1−α)(g+n) = g+n

• Consumption in Steady State. Although the saving rate effect of output
per effective worker unambiguously increases with saving rate, this is not
the case for consumption.
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χ∗ =
C∗t
AtLt

= y∗t (1− s) = k∗αt (1− s) = (1− s)( s

n+ g + δ
)α/1−α

Notice now, on one hand, a higher saving rate allows the economy to
produce more, but at the same time, it means a smaller fraction of income
going to consumption. Let me call the first Size-of-Pie effect and the
second Fraction-of-Pie effect. The real effect on consumption depends
upon the counterbalancing of the two. In one extreme case, the stock of
capital is far below k∗ where the marginal production of capital is high.
A marginal increase in saving rate results in a substantially bigger size of
the pie. Thus the size effect dominates, thus consumption increases with
the big pie. In the other extreme where k is significantly higher than k∗,
the Fraction-of-Pie effect dominates.

The saving rate that maximizes χ is called Golden Rule(GR now after).
As the Solow model just takes the saving rate as exogenously given, there
is no guarantee that the saving rate is at the GR level.

Consumption is the total production left after break-even capital.

χ = kα − (n+ g + δ)k

The first-order condition with respect to k

f ′(kGR) = n+ g + δ

.

The GR capital level is such that its MPK equal to the growth rate of
population, technological growth, and depreciation.

It is also interesting to see what the saving rate is under the Gold Rule.
With the Cobb-Douglass production form, one can solve that the GR
saving rate turns out to be equal to α, capital share.

αkα−1
GR = n+ g + δ

kGR = (
α

n+ g + δ
)

1
1−α

Compare it with the steady-state k∗ with any exogenous saving rate s, it
clear that

sGR = α

Mathematically, this is equivalent to solving optimal s under steady-state.

Taking first-order derivative of the following equation:
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χ = k∗α(1− s)

⇒ ∂k∗α

∂sGR
(1− sGR) = αk∗α−1 ∂k∗

∂sGR
= k∗α ⇒ sGR = α1

Intuitively, this implies that the GR saving rate is such that saving in each
period exactly matches the share of capital in production. This makes the
Size and Fraction effect break even.

5 Extensions

• Growth with Bounded Resources. The benchmark model above assumes
the production capacity is not constrained by the limit of natural recourses
such as land and environments. The boundedness of production factors
can be modeled by assuming zero or negative growth rate of these factors
over time. Consider the following example:

Yt = Kα
t L

βRθt (AtLt)
1−α−β−θ

where L is constant over time. And the growth rate of resource Ṙ
Rt

= −b
where b > 0.

Now the economy cannot achieve a balanced growth rate with a con-
stant level of capital per effective labor anymore. When we normalize the
production function by AtLt, it is easily seen that the numerator and de-
nominator are to the power of α and α+β+ θ, respectively. If both bases
grow by constant rates, the ratio of the two cannot stay the same.

From an aggregate perspective, now the question becomes that there are
certain factors that stay the same or decline over time. Since in such a
production function every factor is a Q-complements, the lack of growth of
certain factors will undoubtedly drag down the growth of the economy as a
whole. It is then now clear that the counterbalancing occurs for technology
and labor force growth against the bounded resources. Depending on the
former or the latter dominates, the total output can grow at a positive,
zero or negative rate. To see this:

ln(Yt) = αln(Kt) + βln(L) + θlnRt + (1− α− β − θ)AtLt

Take the derivative with respect to time t, it gives

1( sGR
n+g+δ

)α/(1−α) = (1 − sGR)(
1

n+g+δ
)α/(1−α) α

1−α s
(2α−1)/(1−α)
GR ⇒ s

α/(1−α)
GR = (1 −

sGR)
α

1−α s
(2α−1)/(1−α)
GR ⇒ sGR = α
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∂lnYt
∂t

= α
∂lnKt

∂t
− θb+ (1− α− β − θ)(n+ g)

Combining

K̇

Kt
=
sYt
Kt
− δ

We have

∂lnYt
∂t

= α(
sYt
Kt
− δ)− θb+ (1− α− β − θ)(n+ g)

Now it is clear that for the output to grow at a constant rate, Yt
Kt

needs
to be a constant, which implies Yt and Kt grow at the same rates. Call it
γ, then we can solve it as below and it can be positive, zero or negative.

γ =
(1− α− β − θ)(n+ g)− θb− αδ

1− α

This seems to be assured that even with limited natural resources, an
economy can still grow at a positive rate as long as the technology grows
fast enough.

But don’t rush to the conclusion. Let’s consider what happened to income
per capita. it should grow at the following rate, which can be also positive
or negative.

γ − n = (1−α−β−θ)(n+g)−θb−αδ−n−nα
1−α = (1−α−β−θ)g−θb−(2n+β+θ+δ)α

1−α

In summary, in presence of bounded resources, there is no way for the
economy to achieve a steady-state per effective labor income, but positive
growth of total output and income per capita is still possible.

6 Quantitative Implications

• Cross-country difference in income per capita. Now back to the baseline
Solow model. To what extent the cross-country difference of income can
be explained using this model? The simple answer is no.

We have derived income per capita in steady-state as below

Yt
Lt

= k∗αAt = (
s

n+ g + δ
)α/1−αAt

Take everything as given, a difference of income per capita ratio of 2
is corresponding to a ratio of saving rates equal to 2α/(1−α). Assuming
α = 0.3, then the ratio of saving rate is approximately 1.4, or 40% increase
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in saving rate. This is not consistent with empirical facts of saving rate and
income per capita. To account for the vast income difference of different
countries, one need unrealistic differences in saving rates across countries.

Another way to look into this is to explicitly work out the elasticity of
income per capita with respect to saving rate. And the same messages
emerge.

∂ln(Y/L)

∂s
=

α

1− α
≈ 0.5

• Convergence Speed.

• Growth Accounting.

7 Discussions

The key feature in the model is that in steady-state, there is no perpetual
growth in per effective labor.

One natural extension of the Solow model is to endogenize the saving rate
by deriving it from a consumer’s optimization problem. One would expect
that once the saving decision becomes an inter-temporal choice, the saving
rate is going to be also dependent upon the preferences of economic agents.
Most importantly, the discount factor or patience.

Further extension is to allow for the role of different types of agents to
make the saving decisions. This allows the economy deviates from the
first best due to the decentralized agents are not infinitely long-lived.
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