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1 Consumer’s Theory

1.1 Marshallian Demand

X is the vector of consumption.

Max u(x) s.t.
∑

pixi ≤ w (1)

Marshallian demand is defined as

x̄(w, p) = argmax
{x}

u(x) s.t.
∑

pixi ≤ w (2)

Correspondingly, define the indirect utility as the maximum value attained
by the Marshallian demand.

v∗(w, p) = u(x̄(w, p)) (3)

Roy’s Identity

x̄i(p, w) = −∂v
∗(p, w)/∂pi

∂v∗(p, w)/∂w
(4)

1.2 Hicksian Demand

Minimize cost to attain utility level non-below a reference point. The problem
is then.

min px s.t. u(x) ≥ ū (5)

Hicksian demand is defined.

h(p, ū) = argmin
{x}

px s.t. u(x) ≥ ū (6)

Expenditure function:
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e(p, ū) = ph(x, ū) (7)

Shephard’s Lemma:

hi(p, ū) =
∂e(p, ū)

∂pi
(8)

1.3 Connection

Slutsky decomposition.

∂x̄i(p, w)

∂pj
=
∂hi(p, v

∗(p, w))

∂pj︸ ︷︷ ︸
S:nsd

− ∂x̄i(p, w)

∂w
x̄j(p, w)︸ ︷︷ ︸

I:ambiguous

(9)

S captures the substitution effect. It is the change in demand for i following
a price change in j holding the utility fixed. Specifically, it is the indirect
utility associated with the current Marshallian demand. I captures the income
effect. It is the change in demand for i in response to a change in income
multiplied by the change in demand for j. In general, there is no guarantee
∂x̄i(p,w)
∂w > 0, namely the demand increases with income. Therefore, the income

effect is ambiguous. We impose the assumption that good i is a normal good,
Therefore, I is positive semi-definite. As a result, the whole equation is negative,
a price increase in j decreases the demand for i.

The following two establish the duality of Hicksian and Marshallian demand.
It is the most intuitive to understand in a graph.

Think of Marshallian demand as pushing outward indifference curve holding
a budget line fixed to where the indifference curve is tangent with the budget
line. Think of Hicksian demand as pushing inward budget line holding indiffer-
ence curve fixed to where the two are tangent. For a well-behaving preference,
that implies the two optimal bundles is the same and uniquely determined.

x̄(p, e(p, ū)) = h(p, ū) (10)

h(p, v∗(p, w)) = x̄(p, w) (11)

For the same reason above, we also have the following two equality relations.
Expenditure that attains utility equal to an indirect utility function, is equal

to income. Indirect utility associated with the minimum expenditure for a
certain utility level is exactly equal to the reference utility.

e(p, v∗(p, w)) = w (12)

v(p, e(p, ū)) = ū (13)

Equation 10 is also what we use to prove the Slutsky Decomposition. Take
its i-th element
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x̄i(p, e(p, ū)) = hi(p, ū) (14)

Taking total derivative with respect to pj and utilizing Shepard’s Lemman
and duality results at optimum 12, 13.

∂hi(p, ū)

∂pj︸ ︷︷ ︸
∂x̄i(p,w)

∂pj

=
∂x̄i(p, e(p, ū))

∂pj︸ ︷︷ ︸
∂hi(p,ū)

∂pj

+
∂x̄i(p, e(p, ū))

∂e(p, ū)︸ ︷︷ ︸
∂xi(p,w)

∂w

∂e(p, ū)

∂pj︸ ︷︷ ︸
hj(p,ū)=xj(p,w)

(15)

1.4 Properties

Here are some properties.

• v(p, w) is quasiconvex in p. That is v(tp+(1−t)p′, w) ≥ maxv(p, w), v(p′, w)

• x̄(λp, λw) = x̄(p, w). Marshallian demand is homogenous of degree zero.

• v(λp, λw) = v(p, w). Indirect utility is homogenous of degree zero.

• h(p, ū) is concave in p. That is h(tp+(1−t)p′, ū) < th(p, ū)+(1−t)h(p, ū)

• e(λp, ū) = λ(p, ū). Expenditure function is homogeneous of degree 1.

• x̄(p, w) obeys single law of demand if normal good.

• x̄(p, w) obeys multi-good law of demand if −x∂
2u(x)x

x∂u(x) < 4

• h(p, ū) obeys law of demand for sure, i.e. (p− p′)(h(p, ū)− h(p′, ū)) ≤ 0.

• x̄(p, w) obeys budget identity if px̄(p, w) = w. A continuous, quasiconcave
and monotone preference � guarantees budget identity.

• x̄(p, w) obeys boundary property if xi(p, w) → ∞ for pt = 0 and w >
0. Strictly monotone, continuous and strictly quasiconcave preference �
guarantees boundary property.

2 Producer’s Theory

2.1 Cost-Minimizing Problem

The cost function is defined as below. w is the factor price, x is factor demand,
y is the production target, F () is the production function.

c(w, y) = min
x

wx s.t.F (x) = y (16)

The solution to the minimization problem is the conditional factor demand
defined as below.
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f(w, y) = argmin
x

wx s.t.F (x) ≥ y (17)

The solution to the problem is non-empty if {x : F (x) ≥ y} 6= ∅ and the set
is also convex and compact, which follow from the production functing being
quasi-concave and continuous.

The solution to the problem is unique if the production function is also
strictly quasi-concave and monotone.

Here are some properties of the cost function. c is exactly the same as the
expenditure function in the consumer’s problem.

• c(λw, y) = c(w, y), homogeneous of degree 0.

• c(w, y) increaes with w and y.

• c(w, y) is concave in w.

• Shepard’s Lemma. Conditional factor factor fi(x, y) = ∂c(w,y)
∂wi

.

• c(w, y) is convex in y if f(w, y) is concave in y.

2.2 Profits Maximization Problem

The general form of the firm’s problem can be written as below. Y is the
production possibility set. y is a l + 1 vector with the first l entries being the
factor inputs and the last being the output. p is now also a l+ 1 vector of input
and output price.

max
y

py s.t. y ∈ Y (18)

Specifically, we define Y as below.

Y = {(−x, y)|y ≤ F (x), x ∈ Rl+}

The firm’s profits maximization can be seen as a two-step problem. First,
determining the profit-maximizing output. Second, minimizing the cost of the
production target. We define profits function being the following.

max
y

R(y)− c(w, y)s.t.y ≥ 0 (19)

The solution to the above problem is supply correspondence.

s(p) = argmax
y

py s.t. y ∈ Y (20)

And profits function is below.

π(p) = s(p) ∗ p

Here are some properties.
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• Hotelling’s Lemma. y∗i = ∂π(p)
∂pi

• π(p) is convex in p.
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