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1 Overview

Allowing for heterogeneity in state variables faced by individual agents pop-
ulating in an economy poses a tractability challenge to macroeconomists. It
typically makes it difficult to aggregate individual variables into tractable equa-
tions that characterize the macro dynamics. Examples of such can be seen
everywhere. For instance, overlapping-generation models in which agents are at
different stages of their life cycles. Sticky price models in which firms are un-
able to reset price instantaneously in each period. Sticky expectation models in
which agents infrequently update their information about newly arrived shocks.

One of the commonly used techniques that tackle such a challenge is to
assume the agents are faced with an independently distributed, memoryless,
and non-state-dependent stochastic shock that governs transition across states.
The shock is typically assumed to follow a point Poisson process. It turns out
such an assumption brings about a number of convenient features that allow
the elegant aggregation of decentralized dynamics. We discuss such a modeling
technology in this note.

2 An example: the Cupid arrow

At any point of the time t, the probability of each individual running into
his(her) love is at a rate of p. The “love” shock is independently distributed
across agents. Also, regardless of the state the individual is in, the probability
remains the same.1.

A few immediate convenient facts can be derived.
First, the average time waiting before someone shows up is 1/p. To see

this, let us consider the time for waiting for tW to be a random variable. The
probability density of this random variable is:

1This also can be thought of as a special case of the survival/duration models, in which
the hazard/failure rate is a constant, independent from the duration of survival. In general, in

this kind of models, the failure rate
f(tw)

1−F (tw)
could be dependent on tw, namely the duration.

Here, the f(tw) is the pdf for an eponential distribution pe−pt and the F (tw) = 1 − e−pt is
the cdf of tw from −∞ to tw. Hence the hazard rate is exactly p.
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f(tw) = pe−ptw (1)

The above equation can be easiest understood in a discrete-time setting.

p(tw) = (1− p)twp (2)

The first term (1 − p)tw is a multiplicative probability of non-encountering
for tw consecutive periods. The second term p is the probability of encountering
in the last period. The continous-time counterpart of (1− p)tw is exactly e−p

t
w .

Some acute readers may find immediately this is the pdf of an exponential
distribution. Therefore, the average waiting time is the expectation of an expo-
nentially distributed random variable. If x follows an exponential distribution,
f(x) = λe−λx∀λ > 0, then E(x) = 1/λ.

E(tw) =

∫ +∞

0

twpe
−ptwdtw =

1

p
(3)

Intuitively speaking, if within each unit of time, something happens at a rate
being p, then the average time before that event happens is 1/p.

The second handy fact from the above assumptions is that at any point
of the time, there is a constant fraction of p of the population who encounter
someone. Or put it differently, if there are N individuals in the economy, as
N → +∞, Np people fall in love at any point in time. This follows from the
Law of Large Numbers.

To see this, define N̂ as the number of people that encounter their love. It
is a random variable. The probability density function of N̂ is

p(N̂) = pN̄ (1− p)N−N̄ (4)

Mean of N̄ can be simply computed as a Binomial distribution with param-
eter N and p.

E(N̄) =

N∑
0

N̄pN̄ (1− p)N−N̄ = Np (5)

This type of practice is quite common in macroeconomic modeling. It is
what mathematicians call the mean-field approach. Macro dynamics, as a con-
sequence of aggregation from micro agents, are typically complicated due to
individual heterogeneity and interactions among agents. But the mean-filed ap-
proach is to characterize these potentially complicated aggregated dynamics by
focusing on the “average” behaviors of the environment. This approach salvages
tractability and elegance to the liking of macroeconomists for a long time, but it
circumvents many important dimensions of the inquiries where individual het-
erogeneity and interpersonal interactions are essential for macro outcomes thus
cannot be simply ignored.

We survey a few concrete applications of such a technique in macroeconomic
models.
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3 Calvo Pricing (Calvo (1983))

There are many ways of modeling nominal rigidity in dynamic New Keynesian
models. Calvo pricing represents one of the tractable approaches widely used
in the literature, and also in some sense, inspired many similar applications in
other macroeconomic models.

The nature of such a problem is that each of a continuum of firms facing
monopolistic competitions needs to optimally set their own price Pi,t taking
aggregate price Pt as given but can only do so at the arrival of the “Calvo
fairy”, which has a constant probability θ in each period, independent of time
elapsed and the states of the economy. Otherwise, the firm has to keep the price
level Pi,t−k they set previously in their latest resetting, say t− k.

The expected path of the aggregate price Pt, relevant to the individual op-
timal behaviors, could have been a complicated distributional object over all
firms with different prices and different adjustment histories. But the Calvo as-
sumption plus two additional convenient features of the NK model, as detailed
below, make the aggregate price Pt easily described as a recursive equation as
follows.

Pt =


∫
S(t)

Pt−1(i)1−εdi︸ ︷︷ ︸
non-reseters price

+ (1− θ) (P ∗t )
1−ε︸ ︷︷ ︸

reseters’ price


1

1−ε

(6)

where we use S(t) to denote the set of individual firms which are not able
to reset price at time t, i.e. non-reseters.

Because of the CES price aggregator under optimal demand, we can first
write the aggregate price as a quasi-linear form of individual prices aggregated
over firms.

Because of the symmetry among firms in its optimal price, a (1− θ) fraction
of the reseters firms all set the optimal price to be P ∗.

Furthermore, because of the crucial assumption of time-independence and
homogeneity in firms, the first term in the bracket can be replaced by θP 1−ε

t−1 .
Because “who” happens to be able to adjust does not depend on the price of
that firm, the distribution of the prices across these reseters are the identical to
that among all firms. This allows us to use aggregate price at t−1, Pt−1, times
a reduced mass of θ to represent the average price indices of the non-reseters.

Pt =
[
θ (Pt−1)

1−ε
+ (1− θ) (P ∗t )

1−ε
] 1

1−ε
(7)

A potentially confusing point regards the additional exponential term 1− ε
in the aggregation. Notice, even if we do not exactly linearly sum all prices over
the distribution, the above logic still follows. To make it more transparent, let’s
relabel P̃t−1(i) ≡ Pt−1(i)1−ε. Then we have
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∫
S(t)

Pt−1(i)1−εdi =

∫
S(t)

P̃t−1(i)di︸ ︷︷ ︸
relabeling

= θ

∫
P̃t−1(i)di︸ ︷︷ ︸

distribution remains the same

= θ(

[∫
Pt−1(i)1−εdi

] 1
1−ε

)1−ε

= θ (Pt−1)
1−ε

(8)

Dividing equation 7 by Pt−1 on both sides and use Πt ≡= Pt
Pt−1

to denote

inflation, we can obtain the following.

Π1−ε
t = θ + (1− θ)

(
P ∗t
Pt−1

)1−ε

(9)

Additional log-linearization around steady state P ∗ = Pt = Pt−1 and Π ==
1, we get the following.

πt = pt − pt−1 = (1− θ)(p∗t − pt−1) (10)

With perfectly price adjustment or zero rigidity, θ = 0, Pt = P ∗, i.e. all
firms optimally set their price at time t.

4 Perpetual Youth (Blanchard (1985))

In a canonical overlapping generation model (OLG), agents in the economy
are distributed across different ages of the life cycle and the consumption and
savings differ across age groups. The “representative agent” in general does not
exist any more in that aggregate behaviors cannot be represented by an average
household in the economy. Instead, an explicit aggregation from decentralized
consumption/saving decisions of agents at different age is needed to characterize
the macro behaviors of the economy.

This means that one need to tract the age distribution and the consump-
tion/saving policy of each age group at each point of the time. This is not
impossible computationally, but analytically it becomes highly tedious and non-
interesting. The perpetual youth model was proposed to address this issue.

Instead of a finite life with a terminal date, the model assumes agents are
ageless, living a perpetual life subject to a constant probability of death p at
any point of the time. This is exactly a point Poisson process, as we assumed
above. It follows that agents have an expected life horizon of 1/p at any point
of the time.
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Putting aside the unrealistic implication from such an assumption that, in
theory, agent may live forever, even the assumption that death probability is
independent of time the agent staying alive is undoubtedly unrealistic.

But such an assumption immediately brings about tractability in two as-
pects.

First, a time-invariant age distribution, according to which the fraction of
agents born at time s and staying alive till t is e−p(t−s), exponentially decreasing
over age t − s. Integrating from s = ∞ to t and assuming that the initial size
of the new borns at each point of the time is always p, then the total mass of
the population is exactly equal to 1. Notice that this is also equivalent to an
integration over age from 0 to ∞ at time t (different age groups).∫ t

s=−∞
pe−e(t−s)ds = 1 (11)

The second convenient implication is that the propensity to consume and save
is no longer a function of age, which comes from the “perpetual” assumption
plus the constant probability of death. This is intuitive because for agents who
remain alive at different age (or equivalently, born at different points of the time
before t), the forward-looking decision problem is intrinsically the same because
they have exactly the same path of future.

It is important to note, however, that the two results alone are not enough
to make it easy to characterize the macro dynamics with only a few aggregate
equations. To see this clearly, write the aggregate consumption Ct as integration
over individual consumption at different ages.

Ct =

∫ t

s=−∞
c(s, t)pe−(t−s)ds

?︷︸︸︷
= Φ(Wt) = Φ(Vt +Ht) (12)

Our goal is to write aggregate consumption as a function of aggregate wealth
Wt or non-human wealth Vt and Ht after this aggregation, i.e. a function
Φ(.). But the human wealth and non-human wealth might differ across age
groups, resulting from potentially complicated income structure. We use w(s, t)
to denote the wealth of the cohort s and assume, in general, the consumption as
a function of wealth is φ(w(s, t)). Then, the integration can be further written
as follows.

Ct =

∫ t

s=−∞
c(s, t)pe−(t−s)ds =

∫ t

s=−∞
φ(w(s, t))pe−(t−s)ds (13)

It is obvious by now that for a general function φ, one cannot further rewrite
the RHS to a function of Wt, unless a special case where it is linear!

Many form of market incompleteness such as borrowing constraints or unin-
sured idiosyncratic income risks, will immediately cause non-linearity of φ. But
even absent of these, the uncertainty regarding death, breaks the market com-
pleteness. It is an idiosyncratic risk facing the agents in the model.

The trick used in perpetual youth model to salvage this market incomplete-
ness, is to assume the death risk is insured by by perfectly competitive insurance
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companies, who pay a premium equal to p to each unit of the wealth held by
those alive, in exchange for the right to collect the accidental bequest wealth in
the case of their death. At any point of the time, p fraction of total wealth is
paid out as premium and exactly p fraction of the total wealth are collected as
accidental bequest, leading to zero profit of insurance companies. Agents will
all willingly accept this offer because it cashes out the wealth that could have
been left unused by them.

Although not discussed in the original model, a similar insurance is equiva-
lent in effect: a benevolent government collects these bequests each period and
redistribute them back to those alive proportional to their current wealth. This
is feasible the wealth distribution of the dead is exactly the same as those alive.

Such an insurance mechanism also solves another subtle issue in aggrega-
tion that is induced by the accidental bequest. Although the consumption is
only made by those alive, the wealth could come from those who have just
accidentally died.

With this insurance, the market is complete and the agents at different
age essentially consume a constant fraction of their total wealth. With the
additional log utility assumption which makes consumption independent of real
interest rate, we have the following linear consumption function (see Blanchard
and Fischer (1989) for the detailed optimization problem).

c(s, t) = φ(w(s, t)) = (θ + p)w(s, t) (14)

where θ is the discount rate.
And it immediately follows that the aggregate consumption is a linear func-

tion of the total wealth.

Ct = (θ + p)Wt (15)

5 Sticky Expectation

One of the key implications from the sticky expectation on aggregate consump-
tion dynamics is the following equation, which explains why current aggregate
consumption growth is correlated with lagged consumption growth. This fact is
inconsistent with a benchmark model where agents instantaneously update the
information and reacts to shocks optimally as a permanent-income consumer.

∆Ct+1 = (1− λ)R∆Ct + εt+1 (16)

The derivation of the equation from the very beginning is tedious. But a
few steps are enough to show the gist of it.

We assume that consumers are distributed over the unit interval. Therefore,
the population average is simply the integral.

Ct+1 = λ Crt+1︸ ︷︷ ︸
Rational C at t

+(1− λ) Cτt<t+1︸ ︷︷ ︸
Non-updated C at t+1

(17)
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The key step forward uses the assumption that the individuals that are
able to update in the economy are randomly selected from the population from
the previous period. Therefore, the average default consumption by the non-
updated population should be equal to the average consumption of the whole
population at time t. Namely

Cτt<t = Ct

Then we can rewrite the equation above.

Ct+1 = λCrt+1 + (1− λ)Ct (18)

Subtracting Ct by both sides yields

∆Ct+1︸ ︷︷ ︸
Ct+1−Ct

= λ(Crt+1 − Crt ) + (1− λ) ∆Ct︸︷︷︸
Ct−Ct−1

(19)

Next, it is important to recognize the expression in the first parenthesis
Crt+1 − Crt should only reflect newly arrived shocks at time t. In its classical
form, where pt is the permanent income, θt and φt are i.i.d. permanent income
and transitory income shocks, respectively. The consumption function of a fully
informed consumer is the following.

Crt+1 = pt︸︷︷︸
pt−1+θt

+
r

R
φt

Therefore

Crt+1 − Crt = (pt+1 − pt) +
r

R
(φt − φt−1) = θt +

r

R
∆φt (20)

θt and ∆φt are both mean-zero i.i.d shock at time t. We can define the whole
term as εt.

λ(Crt+1 − Crt ) ≡ εt ∼ N(0, λ2σ2
θ + 2λ2σ2

φ) (21)

This loosely proves equation 16. It is loose because we do not prove that
there is R in the original equation. But this is a trivial step.
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