Constant Elasticity of Substitution(CES) Demand System and Price Aggregator

Tao Wang

December 8, 2022

1 Basic Facts

A consumer derives her utility from a bundle of one unit continuum of goods with constant elasticity of substitution (CES). Index the good by $i \in[0,1]$. The elasticity of substitution is ϵ. The greater value it has, the more substitutable across individual goods. The function collapses to Cobb-Douglass form with constant return of scale form when $\epsilon \rightarrow 1$.

Consumption bundle C is defined as below.

$$
C=\left[\int_{0}^{1} c_{i}^{1-\frac{1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

Then there are two nice features of such a demand.
First, there is a composite aggregate price representation of the consumption bundle.

$$
P=\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}}
$$

p_{i} is the price of good i.
Second, we can express demand for individual good i as a fraction of the total consumption bundle.

$$
c_{i}=\frac{p_{i}^{-\epsilon}}{P^{1-\epsilon}} C
$$

This convenient fact has been widely used in New Keynesian Models. It is due to Dixit and Stiglitz (1977)

2 Derivation

The consumer's problem:

$$
\begin{equation*}
\operatorname{Max}\left[\int_{0}^{1} c_{i}^{1-\frac{1}{\epsilon}} d i\right]^{\frac{\epsilon}{1-\epsilon}} \quad \text { s.t. } \int_{0}^{1} p_{i} c_{i} d i \leq 1 \tag{1}
\end{equation*}
$$

With λ being the Lagrangian multiplier, F.O.C. is as below

$$
\begin{gather*}
\frac{\partial C}{\partial c_{i}}=\frac{\epsilon}{\epsilon-1} C^{\frac{1}{\epsilon}} c_{i}^{-\frac{1}{\epsilon}}=\lambda p_{i} \tag{2}\\
c_{i}=\left(\frac{p_{i}}{p_{j}}\right)^{-\epsilon} c_{j} \tag{3}\\
p_{i} c_{i}=\left(\frac{p_{i}}{p_{j}}\right)^{-\epsilon} p_{i} c_{j}=p_{i}^{1-\epsilon} p_{j}^{\epsilon} c_{j} \tag{4}
\end{gather*}
$$

Taking the integral over i

$$
\begin{equation*}
1=p_{j}^{\epsilon} c_{j} \int_{0}^{1} p_{i}^{1-\epsilon} d i \tag{5}
\end{equation*}
$$

Solving c_{j}

$$
\begin{equation*}
c_{j}=\frac{p_{j}^{-\epsilon}}{\int_{0}^{1} p_{i}^{1-\epsilon} d i}=\frac{p_{j}^{-\epsilon}}{P^{1-\epsilon}} \tag{6}
\end{equation*}
$$

This proves the second part. (A special case when $\mathrm{C}=1$).
From Equation (3) we know price P can be the expenditure of buying one unit of C, that is

$$
\begin{gather*}
C=\left[\int_{0}^{1} c_{i}^{1-\frac{1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}=\left[c_{j}^{\frac{\epsilon}{1-\epsilon}} p_{j}^{\epsilon-1} \int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{\epsilon}{\epsilon-1}}=c_{j} p_{j}^{\epsilon}\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{\epsilon}{\epsilon-1}} \tag{7}\\
c_{j}=C p_{j}^{-\epsilon}\left[\int_{0}^{1} p_{j}^{1-\epsilon} d i\right]^{\frac{\epsilon}{1-\epsilon}} \tag{8}
\end{gather*}
$$

Multiplying p_{j} on both sides

$$
\begin{equation*}
c_{j} p_{j}=C p_{j}^{1-\epsilon}\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{\epsilon}{1-\epsilon}} \tag{9}
\end{equation*}
$$

Taking integral over j

$$
\begin{equation*}
E=C \int_{0}^{1} p_{j}^{1-\epsilon} d j\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{\epsilon}{1-\epsilon}}=C\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{\epsilon}{1-\epsilon}}=C\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \tag{10}
\end{equation*}
$$

Set $C=1$, then we have

$$
\begin{equation*}
P=\left[\int_{0}^{1} p_{i}^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \tag{11}
\end{equation*}
$$

This proves the first part.

3 With relative taste weights

Here is a more generalized case with taste weights. By the same derivation, we can also show that if a preference weight of w_{i} is assigned to good i in the CES aggregator, namely

$$
C=\left[\int_{0}^{1} w_{i} c_{i}^{1-\frac{1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

the price index will be

$$
P=\left[\int_{0}^{1} w_{i}^{\epsilon} p_{i}^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}}
$$

And the individual demand is

$$
c_{i}=\frac{w_{i}^{\epsilon} p_{i}^{-\epsilon}}{P^{1-\epsilon}} C
$$

