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1 Introduction

Macroeconomists have developed different models of expectation formation to account for

observed patterns of survey expectations that are inconsistent with the benchmark of full-

information rational expectations (FIRE). Some of the models, such as Sticky Expectations

(SE)1 and Noisy Information (NI),2 feature incomplete information and information rigidity in

the form of sluggish responsiveness to aggregate shocks, as documented by Coibion and Gorod-

nichenko (2012, 2015). Other models, such as Diagnostic Expectation (DE) (Bordalo et al.,

2018), implies overreaction to the news at the individual level.3 A hybrid model of DE and NI

(Bordalo et al., 2020) has been developed to match the disagreement in addition to individual

overreactions.

The estimation of these models4 has been primarily focused on the patterns of forecast errors,

revision, and disagreement in the survey data. What remains underexplored in this literature

are the behaviors of uncertainty, which, here, strictly refers to the dispersion of density forecasts.

This paper first shows that, according to these non-FIRE models, forecasters’ uncertainty differs

from the fundamental volatility of the shocks for several reasons, such as incomplete information

and imperfect responses to new information. Then it uses distinctive predictions regarding

uncertainty by different models to identify the exact model of expectation formation. Since the

bulk of the literature on macroeconomic expectation formation has been developed around the

survey evidence of inflation forecasts, this paper primarily focuses on inflation expectations.

Consider FIRE, first, for some intuition on why various models of expectation formation

have distinctive predictions about the rankings and parameter restrictions regarding various

forecasting moments. With complete information and an identical model as assumed, forecast

uncertainty only reflects the conditional variance of the unforecastable component of inflation.

Therefore, the ex-ante uncertainty would be exactly equal to the variance of ex-post forecast

errors and to the size of the conditional volatility of inflation.

In contrast, there is additional uncertainty of the variable to the conditional volatility given

a perfectly updated information set in the two models featuring incomplete information or

information rigidity, Sticky Expectations (SE) and Noisy Information (NI), but for different

reasons.

In SE, the extra uncertainty arises because of lagged updating of information. It results in a

higher uncertainty than the volatility of the unrealized shock. Meanwhile, the variance of ex-

1Mankiw and Reis (2002); Carroll (2003); Reis (2006).
2Lucas (1972); Woodford (2001); Maćkowiak and Wiederholt (2009).
3Kohlhas and Walther (2021) proposes an extended model of NI allowing for multiple unobserved components

to reconcile the coexistence of under- and overreaction.
4For instance, Coibion and Gorodnichenko (2012, 2015); Bordalo et al. (2020).
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post forecast errors is reduced compared to FIRE as information rigidity attenuates the average

forecast responses to shocks to inflation. These patterns are observed in both the New York

Fed’s Survey of Consumer Expectations (SCE) and the Federal Reserve Bank of Philadelphia’s

Survey of Professional Forecasters (SPF). In contrast, the additional uncertainty in NI comes

from the noisiness of the information and endogenously determines agents’ degree of reaction to

the news in the Kalman filtering problem. The model predicts both uncertainty and variance

of forecast error to be greater than the conditional volatility of the inflation due to the presence

of noises. However, it accommodates a flexible relative size between the two depending on the

noisiness of signals. The model-consistent noisiness of signals hence becomes a quantitative

question.

Different from models of information rigidity, the canonical model of Diagnostic Expectation

(DE), although assuming that agents extrapolate in the mean forecast of the variable, keeps

the uncertainty equal to that in FIRE. At the same time, DE predicts an attenuated variance

of forecast errors due to the mean-reverting nature of the overreaction to persistent shocks. A

hybrid of Diagnostic Expectations and Noisy Information (DENI), proposed by Bordalo et al.

(2020), entails both overreaction mechanisms and dispersed noisy information. Uncertainty is

unambiguously larger than the conditional volatility of the variable due to the presence of noisy

information. Meanwhile, the variation of forecast error could be either attenuated or amplified,

depending on the parameter values of the model.

In addition to the model differentiation, uncertainty also provides extra moment restrictions

to estimate model-specific parameters. The second part of this paper structurally estimates all

models based on cross-moment predictions that jointly target different moments, forecast errors

(FE), cross-sectional disagreements (Disg), and uncertainty (Var).5 The estimations further

favor SE over NI mechanisms as a source of information rigidity in inflation expectations.

In particular, my estimates of the SE model report a sensible updating rate of around one-

third per period for both types of agents, which is aligned with many estimates in the literature.

In contrast, the estimated noisiness of public and private signals in NI are unrealistically high

and unstable, i.e., at a ballpark value of 3 percentage points or higher relative to an uncondi-

tional standard deviation of inflation of 0.8 in headline CPI or 0.4 in core PCE in the sample

period. The intuition behind the poor fit of canonical NI is that Kalman filtering requires agents

to efficiently decide their responsiveness to new information based on the prior uncertainty and

noisiness of information. Therefore, effectively, only extremely imprecise signals could result in

persistent information rigidity as we see in the data.

5Some other contemporaneous papers also structurally estimate theories on expectation formation based on
single or multiple moments of surveyed expectations, such as Giacomini et al. (2020); Xie (2023); Bordalo et al.
(2020); Farmer et al. (2021); Ryngaert (2017), without using information from survey uncertainty. A few recent
exceptions include Binder et al. (2022), Gemmi and Mihet (2024).
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In addition to the evidence for rigidity, my estimates of DE and DENI do suggest a coexistent

overreacting mechanism at the individual level, i.e., a non-zero fraction of agents in the economy

have a positive degree of overreaction. This is consistent with the findings in the literature

showing the coexistence of rigidity and overreaction (Angeletos et al. (2021); Kohlhas and

Walther (2021)).

In addition to the benchmark estimation based on the assumption that inflation follows a

stationary AR(1) process with constant volatility, I also extend the analysis to consider an

alternative process of stochastic volatility (SV) as formulated in Stock and Watson (2007). The

alternative assumption flexibly accommodates components of different persistence and time-

varying volatility. I also alter the estimation across low and high inflation periods (before and

after 2020) to examine the possible state-dependence of expectation formation. This relates to

several studies showing that the information rigidity and degree of underreaction tend to be

lower in periods of high volatility.6

Through the lens of SE, both households and professionals have increased the updating rate

of new information in the recent period. The estimates of DENI, however, seem to suggest

divergent patterns of the two types of agents. In particular, professionals have shifted from

overreaction on average and relatively precise individual information7 to underreaction and

more dispersed information in the high inflation episode. Households, in contrast, have become

overreactive as inflation has elevated in recent years, consistent with the intuitive pattern that

news coverage and social interactions have significantly resulted in household attentiveness to

inflation news.

Related Literature

This paper is related to four strands of literature. First, it is related to a series of empirical

studies directly testing and estimating various theories on expectation formation using survey

data. Early examples of such work include Mankiw and Reis (2002), Mankiw et al. (2003),

Carroll (2003), and Branch (2004). More recent examples include Coibion and Gorodnichenko

(2012, 2015); Coibion et al. (2018), which test common implications of various theories with

different micro-foundations. In addition to testing particular sets of theories, there are also a

number of papers showing that people’s expectations are driven by individual heterogeneity,

such as socioeconomic characteristics, cognitive abilities, and experiences of macroeconomic

histories (Malmendier and Nagel (2015), Das et al. (2017), and D’Acunto et al. (2019)8). Com-

6Coibion and Gorodnichenko (2015); Xie (2023); Weber et al. (2023).
7Consistent with the findings of Bordalo et al. (2018).
8See D’Acunto et al. (2023) for a thorough survey of the empirical evidence of heterogeneous inflation

expectations and their drivers.
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pared to reduced-form estimation based on a particular moment, this paper shares the spirit

of Giacomini et al. (2020); Xie (2023); Valchev and Gemmi (2023) in carrying out a structural

estimation of models of expectation formation using multiple moments in the survey, taking into

account factors such as measurement error and the strategic incentives of forecasters. However,

none of these studies directly use density forecasts or surveyed uncertainty. This is one theme

on which this paper differs from the existing literature.

Second, this paper is related to the macroeconomic literature on measuring uncertainty,

especially those using survey data.9 Various proxies of uncertainty that have often been used

include ex-ante cross-sectional disagreement (Bachmann et al., 2013), approximated conditional

volatility based on time-series forecasting (e.g., Jurado et al. (2015)), and ex-post forecast errors

(Bachmann et al., 2013; Rossi and Sekhposyan, 2015). Some studies empirically evaluated the

correlation between the aforementioned proxies and the uncertainty measured by the dispersion

of density forecasts. Zarnowitz and Lambros (1987) made a clear conceptual distinction between

disagreement and uncertainty and found a very low correlation between the two in an early

sample of SPF. Follow-up studies (Rich and Tracy, 2010; D’Amico and Orphanides, 2008; Abel

et al., 2016; Glas, 2020; Rich and Tracy, 2021) echoed such a finding, mostly based on SPF

data, although Bomberger (1996); Giordani and Söderlind (2003); Lahiri and Sheng (2010)

arrive at different conclusions. One point that was often not explicit in this literature is that

the relationship between various ex-ante uncertainty, ex-post forecast errors, and disagreement

depends on the mechanisms of expectation formation.10 My paper explicitly compares various

models of expectation formation, which predicts distinctive relationships across these moments.

Third, Manski (2004), Delavande et al. (2011), Manski (2018), and many other papers have

long advocated for eliciting probabilistic questions measuring subjective uncertainty in eco-

nomic surveys. Although the initial suspicion concerning people’s ability to understand, use,

and answer probabilistic questions is understandable, Bertrand and Mullainathan (2001) and

other work have shown that respondents have the consistent ability and willingness to assign

a probability (or “percent chance”) to future events. Armantier et al. (2017) provides a thor-

ough discussion on designing, experimenting, and implementing consumer expectation surveys

to ensure the quality of the responses.11 Broadly speaking, the literature has argued that going

9Survey-based uncertainty measures are among various methods seen in the literature, such as using news
texts (Bloom, 2009), econometric methods (Jurado et al. (2015)), and market derivatives (e.g., VIX index), as
summarized in Cascaldi-Garcia et al. (2023). Besides, Binder (2017) creates a novel measure using household
survey data based on the insight from cognitive science that people tend to round numbers when facing higher
uncertainty.

10Gambetti et al. (2023) shows that under dispersed information, uncertainty measured as forecast error
variance entails both fundamental volatility and dispersion of the information.

11Others include Van der Klaauw et al. (2008) and Delavande (2014), etc. See Bassetti et al. (2023) for a
complete survey on methods of extracting information from density forecasts and their macroeconomic applica-
tions.
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beyond the revealed preference approach, the availability of survey data provides economists

with direct information on agents’ expectations and helps avoid imposing arbitrary assump-

tions. This insight holds for not only point forecast but also, and even more importantly,

for uncertainty, because for any economic decision made by a risk-averse agent, not only the

expectation but also the perceived risks matter a great deal.

Finally, the literature that has been originally developed under the theme of forecast efficiency

(Nordhaus, 1987; Davies and Lahiri, 1995; Clements, 1997; Faust and Wright, 2008; Patton and

Timmermann, 2012) provides a framework for analyzing the dynamics of uncertainty that is

useful for the purpose of this paper. The focus of the forecasting efficiency literature is evaluating

forecasters’ performance and improving forecasting methodology, but it can be adapted to test

the theories of expectation formation of different types of agents. This is especially relevant to

this paper, where I focus on uncertainty.

2 Theoretical Benchmark and Basic Facts

2.1 Full-information rational expectation (FIRE)

Assume the underlying data generating process of yt is AR(1) with a persistence parameter

0 < ρ < 1 and i.i.d. shock ωt whose time-invariant volatility is σω.

yt = ρyt−1 + ωt, ωt ∼ N(0, σ2
ω) (1)

FIRE benchmark assumes that all agents perfectly observe yt at time t and understand the

true process of y. Therefore, the individual forecast is ρhyt, which is shared by all agents.

Therefore, it is also equal to the average forecast.

Both individual and population forecast errors are simply the realized shocks between t + 1

and t+ h.

FE
∗
t+h|t = −

h∑
s=1

ρs−1ωt+h+1−s (2)

I use the superscript of ∗ to denote all the moments according to FIRE. It is easy to see that

the forecast error is orthogonal to information available till time t. This provides a well-known
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null hypothesis of FIRE.12

The unconditional variance of h-period-ahead FE, or equivalently, the expected value of its

square (due to zero unconditional mean), is equal to the following. (• indicates that it is

unconditional on t.)

FE
∗2
•+h|• =

h∑
s=1

ρ2(s−1)σ2
ω (3)

The uncertainty about future y simply comes from uncertainty about unrealized shocks be-

tween t and t + h. With the same model in mind (Equation 1) and the same information yt,

everyone’s uncertainty is equal to the weighted sum of the future volatility before its realization

(Equation 4), which is exactly equal to the variance of forecast errors, FE
∗2
•+h|•.

Var
∗
•+h|• =

h∑
s=1

ρ2(s−1)σ2
ω (4)

Lastly, FIRE predicts a zero disagreement, and it is so regardless of the behaviors of forecast

errors and uncertainty: Disg
∗
•+h|• = 0.

2.2 Density surveys of inflation

Both forecast errors and disagreement are easily computed with cross-sectional surveyed expec-

tations. The uncertainty is only available in density forecasts. This paper uses two datasets of

density forecasts of inflation by professionals and households, where respondents are asked to

assign probabilities to various ranges of values of future inflation.

The Survey of Professional Forecasters (SPF) collects professionals’ individual density fore-

casts of core CPI and core PCE inflation since 2007.13 In each quarter, density forecasts of

fourth-quarter-to-forth-quarter inflation in the current year and next year are elicited. In addi-

tion, because the forecasts are reported in all quarters of a year regarding Q4/Q4 inflation, the

forecast horizons change within a year.

The New York Fed’s Survey of Consumer Expectations (SCE), which started in 2013, also

12Another well-known prediction of FIRE is that forecast errors of non-overlapping horizon are not correlated,
namely, Cov(FE

∗
t+h|t, FE

∗
t+s+h|t+s) = 0 ∀s ≥ h. This is not the case within h periods, as the realized shocks

in overlapping periods enter both forecast errors.
13Previous studies used an extended sample of the density forecast of the GDP deflator starting from 1968 in

the predecessor of SPF, or the NBER-ASA Economic Outlook Survey.
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asks households to report their distribution forecasts of 1-year- and 3-year-ahead inflation for

various ranges of values each month.14 One major difference between SCE and SPF is that the

former elicits fixed-horizon expectations, while the latter elicits fixed-event ones.15

Converting expressed density forecasts based on externally divided histograms into an un-

derlying subjective distribution requires a density estimation. I closely follow Engelberg et al.

(2009)’s method to estimate the density distribution of each respondent in SPF.16 For SCE, I

directly use the estimates by the New York Fed (Armantier et al., 2017), following the same

method.

2.3 Joint behaviors of forecast errors, disagreement, and uncertainty

Despite the stark differences in magnitudes between professionals’ and households’ forecasting

moments, both types of agents share common patterns in terms of the relationship across various

moments. Figure 1a, 1c, and 1b plot the population uncertainty against squared forecast errors,

disagreements, and estimated conditional volatility from a real-time AR(1) prediction model,

respectively.

Figure 1a inspects the relationship between the size of the forecast error and uncertainty.

According to the benchmark prediction under FIRE, the ex-ante forecast uncertainty is equal

to the variance of ex-post forecast errors on average. In the data, the correlation coefficients

of the two are 0.31 and 0.26 for SPF core CPI forecasts and SCE’s forecasts, respectively.

Excluding the post-2020 sample of inflation surge yields smaller correlation coefficients. In

addition, except for this period, the scatters are always below the 45-degree lines, indicating

that average uncertainty is persistently greater than that of the size of the forecast error.

How is the uncertainty compared to the conditional volatility of the inflation? Using real-time

AR(1) predictions of inflation, we can approximate the conditional volatility σ2
ω as the squared

one-step-ahead forecast errors for each point of the time. Households’ uncertainty regarding

inflation is much higher than the approximate conditional volatility. Professional forecasters

show the same pattern, except for the special period of the post-2020 surge in inflation. For

both types of agents, conditional volatility is positively associated with uncertainty, with at

most a weak positive relationship. Meanwhile, the scatters, especially those of households, fall

below the 45-degree line, indicating uncertainty persistently exceed the size of the one-step

forecast errors. To the extent that a more sophisticated real-time forecast model would in

theory produce a smaller forecast errors, it is robust to make the observation that uncertainty

14The survey respondents are guaranteed to assign probabilities to all bins that sum to one as a feature of
the online survey design.

15See Clements et al. (2023) for a detailed discussion of these differences in survey structure.
16See the Python program with detailed steps of estimation.

7

https://github.com/iworld1991/InfVar/blob/master/workingfolder/python/DoDensityEst.ipynb


Figure 1: Uncertainty and Other Moments

(a) Uncertainty and Squared Forecast Errors

(b) Uncertainty and Conditional Volatility

(c) Uncertainty and Disagreement

Note: From left to right: SPF’s forecasts of core CPI and SCE’s household forecast of headline CPI. From top

to bottom: uncertainty versus square of the realized forecast errors; uncertainty versus conditional volatility

approximated by one-step-ahead forecast errors from an AR1 prediction model, and uncertainty versus

disagreements.
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are greater than conditional volatility.

Lastly, Figure 1c plots the relationship between disagreement and uncertainty. FIRE predicts

all scatters should be all lie on the x-axis given a zero disagreement. We saw positive disagree-

ments throughout the sample, and the disagreement and uncertainty exhibit an extremely

positive correlation for households, a correlation coefficient of 0.91. But such a correlation is

much smaller for professionals, especially when the post-2020 inflation surge sample is excluded.

This is consistent with a large body of empirical literature on professionals’ forecasts.17

Three patterns emerge from the discussions above. First, households and professionals tend

to perceive uncertainty to be greater than the average forecast errors they end up making.

Second, uncertainty seems to reflect more than just the conditional volatility of the inflation

shocks conditional on most recent realization of the inflation. Third, there is persistent non-zero

disagreement that tends to correlated with the uncertainty. The natural question is, therefore, if

not just full-information conditional volatility of the shocks and the ex-ante perceived variation

of the forecast errors, what else does the observed uncertainty contain? We consider a few

models of expectation formation that may offer different explanations for such patterns.

3 Alternative Theories of Expectation Formation

3.1 Sticky expectations (SE)

The model of sticky expectations (Mankiw and Reis (2002), Carroll (2003)), regardless of its

micro-foundation,18 posits that agents do not update information instantaneously as they do

in FIRE. Therefore, through the lens of SE, additional uncertainty arise relative to conditional

volatility of the shocks due to lagged updating of past shocks and delay in the information

reduction.

In particular, one tractable assumption of SE is that agents update their information with a

homogeneous and time-independent probability, denoted by λ. Specifically, at any point of time

t, each agent learns about the up-to-date realization of yt with the probability of λ; otherwise,

they form the expectation based on the most recent up-to-date realization of yt−τ , where τ is

17A large body of empirical literature in macroeconomics uses disagreements, which is often more available
than uncertainty, as a proxy of the latter. But several studies since Zarnowitz and Lambros (1987) found
mostly weak evidence for a high correlation between disagreement and uncertainty. (Bomberger, 1996; Giordani
and Söderlind, 2003; Rich and Tracy, 2010; Lahiri and Sheng, 2010; D’Amico and Orphanides, 2008; Binder,
2017; Glas, 2020; Rich and Tracy, 2021). Most of the comparisons are based on professional forecasters, except
Binder (2017), which, by measuring the uncertainty based on rounding, found a high correlation between the
two measures. More recently, Manski (2018) points out that much empirical work has confused dispersion with
uncertainty.

18For instance, Mankiw and Reis (2002) models SE as a result of individual attention choice subject to
information cost, while Carroll (2003) models SE as a gradual diffusion of information among the population.

9



the elapsed time since the last update.

The average forecast under SE is a weighted average of up-to-date rational expectations and

lagged average expectations.19 It follows that the average forecast errors are serially correlated,

as described in Equation 5.

FE
se

t+h|t = (1− λ)ρFE
se

t+h−1|t−1 + λFE∗t+h|t (5)

The unconditional variance of the h-period-ahead forecast error (or its square) is proportional

to that of the FIRE. It is also easy to confirm the former is always smaller than the latter as long

as there is stickiness (λ < 1). Intuitively speaking, stickiness in expectations implies attenuated

responses to inflation shocks compared to FIRE, hence a lower variation in forecast errors across

time.

FE
se2

•+h|• =
λ2

1− (1− λ)2ρ2
FE∗2•+h|• ≤ FE∗2•+h|• (6)

Like average forecasts, average uncertainty at time t is also a weighted average of uncertainty

to agents whose last updates took place in different periods of the past: t− τ ∀ τ = 0, 1...∞
(Equation 7). Since at any point in time there are agents who have not updated the recent

realization of the shocks, and thus perceive higher uncertainty, the population uncertainty is

unambiguously higher than in the case of FIRE. (See the Appendix for detailed derivations.)

Var
se

t+h|t =
+∞∑
τ=0

λ(1− λ)τ︸ ︷︷ ︸
fraction of non-updater until t−τ

Var∗t+h|t−τ︸ ︷︷ ︸
uncertainty based on updating by t−τ

= (1− λρ2h

1− ρ2 + λρ2
)

1

1− ρ2
σ2
ω

≥ Var
∗
t+h|t

(7)

For example, the average uncertainty regarding 1-period-ahead inflation (h = 1) is equal

to σ2
ω

1−(1−λ)ρ2
, which collapses to σ2

ω when λ = 1 under FIRE and takes a larger value for any

0 < λ < 1.

Lastly, SE also predicts non-zero disagreements and sluggish adjustment compared to FIRE.

This is because of different lags in updating across populations.

19See Coibion and Gorodnichenko (2012) for detailed steps.
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In summary, SE predicts a higher average uncertainty and a lower expected forecast error

square than their counterparts in FIRE, both of which should be identical to the conditional

volatility of inflation under FIRE. In addition, SE predicts positive disagreements. These

patterns are indeed observed in survey data, especially that of households. Next, we move to

other theories to see if such patterns are distinctive predictions by SE.

3.2 Noisy information (NI)

A class of models (Lucas (1972), Sims (2003), Woodford (2001), Maćkowiak and Wiederholt

(2009), etc.), noisy information (NI hereafter) describes the expectation formation as a process

of extracting the underlying variable yt from a sequence of realized signals. NI has an additional

source of the variation in forecast errors and the uncertainty in forecasting than in FIRE, due

to the noisiness of the signals.

I reproduce the same signal structure as in Coibion and Gorodnichenko (2015) by assuming

that an agent i observes two signals: spbt = yt + εt, being a public signal common to all agents,

and spri,t = yt + ξi,t being a private signal specific to the agent i. Both noises follow a normal

distribution with zero mean and variances equal to σε and σξ, respectively.

Skipping the details of derivation, the average forecast error under NI is the following (Equa-

tion 8). Since private signals cancel out, on average, across agents, only a public signal, εt,

directly enters the average forecast errors. Average population forecast error is a combination

of lagged errors in nowcasting, partial responses to new public information, and forecast errors

under FIRE.

FE
ni

t+h|t = (1− PH)ρFE
ni

t+h−1|t−1 + ρhPεεt + FE∗t+h|t (8)

P is the Kalman gain, a vector of size two that determines the degrees of reaction to signals.

H is a vector of two ones, [1, 1]′. Notice, further, that the degree of reaction to new information

P endogenously depends on, first, the prior nowcasting uncertainty, Varnii,t|t−1, as of t − 1, and

second, the noisiness of signals summarized by Σv.

P = [Pε, Pξ] = Varnii,t|t−1H
′(H ′Varnii,t|t−1H + Σv)−1

Σv =

[
σ2
ε 0

0 σ2
ξ

]
(9)
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Kalman filtering also updates the uncertainty recursively according to the following rule. The

posterior uncertainty at time t is a linear function of prior uncertainty and noisiness of signals.

Varnii,t|t = (1− PH)Varnii,t|t−1

= (1− PH)(ρ2Varnii,t−1|t−1 + σ2
ω)

(10)

The average square (or the unconditional variance) of the forecast errors is unambiguously

greater than FE∗2t+h|t in FIRE, as shown in Equation 11. The simple reason for this is that the

forecast errors under NI always come from not only the realized shocks to inflation but also

nowcasting noises.

FE
ni2

•+h|• =
ρ2hP 2

ε σ
2
ε + FE∗2•+h|•

(PH)2
≥ FE∗2•+h|• (11)

The unconditional nowcasting variance can be solved as the steady-state value in Equation

10. Note that the average uncertainty non-linearly depends on the noisiness of the two signals

σ2
ε and σ2

ξ , as well as the volatility of inflation, σ2
ω.

The h-period-ahead forecasting uncertainty comes from both nowcasting uncertainty and

volatility of unrealized shocks in the future (Equation 12).

Varnit+h|t = ρ2hVarnit|t +
h∑
s=1

ρ2(s−1)σ2
ω ≥ Var∗t+h|t (12)

NI also predicts non-zero disagreement in the presence of private signals. The size of the

disagreement depends on, but is not a strictly increasing function of, the noisiness of the private

signals. This is so because if the noisiness of private signals σξ is much larger, say close to infinity,

than that of the public signal σε, agents will optimally not at all react to private signals. In

this scenario, the disagreement will no longer increase with σξ.

In summary, both the variance of forecast error and uncertainty are greater than conditional

volatility of the inflation because of the presence of noisy signals. Meanwhile, their relative sizes

are ambiguous. Disagreement is positive as long as there is dispersed information in the form

of private signals and they are not too noisy. In addition, all three moments contain parametric

restrictions about the noisiness of public and private signals. It is possible that, under a range

of parameter values, NI generates moments that are consistent with the observed data from the

12



survey. We leave this task for the structural estimation in Section 4.

3.3 Diagnostic expectations (DE)

Different from the previous two theories featuring informational rigidity, diagnostic expectation

(Bordalo et al. (2018)) introduces an extrapolation mechanism in expectation formation that

results in overreactions to the news (Bordalo et al. (2020)). Both SE and NI deviate from FIRE

in terms of the information set available to the agents (the “FI” assumption), while DE deviates

from FIRE in terms of the processing of an otherwise fully updated information set (the “RE”

assumption).

Skipping over its micro-foundation, Equation 13 captures the essence of the DE mechanism.

Each individual i’s h-period-ahead forecast consists of two components. The first component

can be considered as a rational forecast based on the fully updated yt. The second component

corresponds to the potential overreaction to the unexpected surprises from t − 1 to t. The

degree of overreaction is governed by the parameter θ. The premise of the DE model is that

θ > 0, which captures the fact that the agent overly responds to the realized forecast errors.

The model collapses to the FIRE when θ = 0. 20

ȳdei,t+h|t = ρhyt + θi(ρ
hyt − ȳdei,t+h|t−1) (13)

There is no room for disagreement with a homogeneous degree of overreaction. To account

for the possibility of a positive disagreement, I assume θ to be different across different agents.

Therefore, I add the subscript i to the parameter. Since agents are equally informed about

the realizations of the variable, the only room for disagreement to be positive is heterogeneous

degrees of overreaction. To capture this, I assume θi to follow a normal distribution across the

population, N(θ̂, σ2
θ). So the DE model has two parameters, and disagreement increases with

the dispersion of overreaction, σθ.

The average forecast takes exactly the same form, with the individual-specific θi replaced by

the population average θ̂. The average forecast error under DE evolves as the following (see the

Appendix for derivations):

FE
de

t+h|t − FE∗t+h|t = −θ̂ρ(FE
de

t+h−1|t−1 − FE∗t+h−1|t−1) + ρhθ̂ωt (14)

20Meanwhile, as argued in Bordalo et al. (2020), a negative θ is not incompatible with an interpretation of
underreaction if we treat DE as a more generalized model of expectation formation.
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Intuitively, moving from t − 1 to t, the h-period-ahead FE exceeds that of FIRE by two

components, one is the mean-reverting change from the overreacted forecast errors from t− 1;

the other is the overreaction to the newly realized shock. Combined, they can be interpreted

as the overreaction to the surprise compared to the expectation formed at t− 1.

The unconditional variance of h-period-ahead forecast errors is the most straightforward in

the special case h = 1, which is equal to the following. It is smaller than the variance of forecast

error in the FIRE benchmark and the conditional volatility of the inflation, σ2
ω.

FE
de2

•+1|• =
σ2
ω

1 + θ̂2ρ2
(15)

Finally, as to the uncertainty, since the mechanism of extrapolation in DE does not change the

agent’s perceived distribution of future shocks, the benchmark DE model forecasts uncertainty

to remain the same as in FIRE.21

V ar
de

t+h|t = V ar
∗
t+h|t (16)

In summary, under DE, the ex-ante uncertainty, which is identical to the conditional volatility

of inflation, is greater than the square of ex-post forecast error. The variability of average

forecast errors are smaller than that in FIRE because of its mean-reversion.

3.4 Hybrid of diagnostic expectations and noisy information (DENI)

Bordalo et al. (2020) embeds heterogeneous information in a standard DE model. Their motiva-

tions are to generate cross-sectional disagreement in forecasts and jointly produce the underre-

action in consensus forecasts and overreaction at individual levels. The framework is essentially

a hybrid of the NI and DE.(the so called “Diagnostic Kalman Filter” by Bordalo et al. (2020))

It maintains the assumption that agents overreact to new information at individual levels, but

the information is no longer the real-time realization of the variable yt itself but noisy signals

of it, which we denote as si,t. I assume a more general signal structure than in Bordalo et al.

(2020) to include both public and private signals, as assumed in Section 3.2.

Then the h-period-ahead forecast takes a recursive form as follows.

21More recently, Bianchi et al. (2024) introduces what they call a model of “Smooth Diagnostic Expectation”
that endogeneize the degree of extrapolation depends on the prior uncertainty.
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ydenii,t+h|t = ydenii,t+h|t−1 + (1 + θ)P deniH(ρhsi,t − ydenii,t+h|t−1) (17)

P deni = [Pε, Pξ] is the vector of Kalman gain as a function of nowcasting uncertainty Vardenit|t

and noisiness of signals σε, σξ. With θ = 0, Equation 17 becomes identical to that in NI with

one private signal, where the forecast is a Kalman-gain-weighted average of new information

and the prior information. Any θ > 0 implies overreaction beyond the optimal Kalman gain.

With such a mechanism, the average FE evolves as follows (see the Appendix for deriva-

tions). At any t, the deviation of FE from FIRE consists of its mean-reversion from t− 1, the

overreaction to the Kalman-gain-weighted inflation shock, and the public noise.

FE
deni

t+h|t − FE
∗
t+h|t =− θρ(FE

deni

t+h−1|t−1 − FE∗t+h−1|t−1)

+ ρh((1 + θ)Pε − 1)ωt + ρh(1 + θ)Pεεt
(18)

Taking h = 1 as an example, the unconditional variance of FE is equal to the following:

FE
deni2

•+1|• =
σ2
ω + ρ2(1 + θ)2(1− Pε)2σ2

ω + ρ2(1 + θ)2P 2
ε σ

2
ε

1 + θ2ρ2
(19)

The above equation collapses to that in FIRE when the public information is perfectly precise

(Pε = 1, σε = 0) and there is no overreaction (θ = 0). It collapses to DE when θ remains positive

and Pε = 1, σε = 0. Compared to the DE model, in which the variation of average forecast

error is attenuated, the NI model introduces a counteracting force that makes variation of FE

possibly bigger than FIRE due to the existence of the noisy signals. Therefore, the relative size

between the variance of FE in DE and FIRE is ambiguous.

Forecast uncertainty under DENI is identical to that in NI, because only the NI mechanism

affects the behaviors of uncertainty.

V ar
deni

t+h|t = V ar
ni

t+h|t (20)

Finally, the DENI model also predicts positive Disg for any noisy private information: σξ > 0.
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3.5 Comparing theories

Table 1 summarizes the predictions by different theories. One can see that the existence of

sticky information in SE or noisy information in NI and DENI is crucial to generating ad-

ditional uncertainty relative to conditional volatility, variation of forecast error and positive

disagreements. But due to the ambiguity of predictions of NI and DENI, the qualitative pat-

terns from data don’t directly bear a clear-cut identification of the correct model. We turn to

structural estimation of each model in the next section to evaluate their relative robustness.

Table 1: Model Predictions

FIRE SE NI DE DENI
Fact 1: Uncertainty greater than forecast error
variance

No Yes ? Yes ?

Fact 2: Uncertainty greater than conditional
volatility

No Yes Yes No Yes

Fact 3: Positive disagreement No Yes Yes Yes Yes

In addition, for each theory not only forecast error but also higher moments, disagreement,

and uncertainty contain restrictions to identify the model parameters within each theory. I will

use these moment conditions to estimate each theory in Section 4.

4 Model Estimation and Sensitivity Analysis

4.1 SMM Estimation

Although reduced-form tests based on survey data often provide additional evidence for re-

jecting the null hypothesis of FIRE, there are two limitations with such an approach in terms

of identifying differences among non-FIRE theories. First, the coefficient estimates from the

reduced-form regression cannot always be mapped into a structural parameter of the particular

model, especially when reported expectations and forecast horizons are at different time frequen-

cies. Second, even if it does so, the tests fall short of simultaneously using all the restrictions

across moments implied by a particular non-FIRE theory, as discussed in great detail in Section

3. In this section, I undertake a structural estimation that jointly accounts for cross-moment

restrictions.

Since many of the moment conditions cannot be easily derived as a closed-form function of

parameters, I adopt the simulated method of moment (SMM). In a nutshell, the estimation

chooses the best set of model parameters by minimizing the weighted distances between the

data moments and the model-simulated moments. For a given process of inflation, and a
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particular theory of expectation formation, the vector of the parameters estimates is defined as

the minimizer of the following objective function:

Ω̂o = argmin
{Ωo∈Γo}

(Mdata − F o(Ωo, H))W (Mdata − F o(Ωo, H))′

where Ωo stands for the parameters of the particular pair of theories of expectation and in-

flation process, i.e., o ∈ {se, ni, de, deni}×{ar, sv}. Γo represents the corresponding parameter

space respecting the model-specific restrictions. Mdata is a vector of the unconditional mo-

ments that is computed from data on expectations and inflation. F o is the simulated model

moments under the theory pair o. W is the weighting matrix used for the SMM estimation.

I report estimation results using the two-step feasible SMM approach, in which the inverse of

the variance-covariance matrix from the first-step estimation using the identity matrix is used

as the W in the second step, which has been shown to give asymptotically efficient estimates

of the model parameters.

Crucially, notice that the model-implied moments F o are not just a function of model param-

eters Ωo, but also a function of the corresponding information set available to the forecasters.

I use H to represent the historical realizations of the variables in the agents’ information set

that are used as the inputs for forecasts.

It is also important to mimic the information set that was truly available to the agents at

each point in time in history.22 Therefore, I use the real-time data on historical inflation that

was publicly available at each point in time instead of the historical data series released later,

since the latter usually experienced many rounds of revisions over time. I obtained the data

from the Real-Time Data Research Center hosted by the Philadelphia Fed.23

The estimation is also specific to the choice of moments to be matched. I focus on the

unconditional population moments of expectations across time in the sample. They include

the the mean (FE), variance (FEV ar), and auto-covariance(FEATV ) of population forecast

error; the mean disagreement (Disg); and the mean uncertainty (V ar) One of the rationales

for focusing on population moments is to avoid measurement errors at the individual level, as

shown in Juodis and Kučinskas (2023).

The model-implied moments also implicitly depend on the parameters of the inflation process

for a given model. This point is illustrated well in Bordalo et al. (2020). For instance, the

observed overreaction in DE is lower for an AR(1) process with higher persistence. In recovering

22For the importance of using real-time data to study survey forecasts, see Faust and Wright (2008), Faust
and Wright (2009), and so on.

23https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/.
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the model parameters associated with expectation formation, it is important to take into account

the information contained in expectation data regarding the process of inflation itself. To

account for this, I undertake both two-step and joint estimation. The former is to first externally

estimate the inflation process and then estimate expectation formation, separately, treating the

inflation parameter as the true data-generating process of inflation. The latter refers to jointly

estimating parameters of inflation and expectation. The moments of inflation dynamics per se,

include the mean (InfAV ), variance (InfV ar), and auto-covariance (InfATV ) of the realized

inflation.

These alternative specifications of the estimation also serve as a model sensitivity analysis

with respect to the following criteria: (1) different choices of moments; (2) two-step and joint

estimation; (3) for both professionals and households. In addition, in the next section, I also

reconsider the assumptions about inflation data-generating process as different from AR(1), and

reevaluate each model of expectation formations. A reasonable theory of expectation formation

ought to be relatively robust to these criteria. I discuss the findings in greater detail along these

four dimensions next.

4.2 Moments-matching and parameter estimates

Table 2 presents the SMM estimates for professionals, as a benchmark. For each theory, I

estimate the theory in two steps and jointly using expectations and inflation moments. Different

rows within each panel report the estimates depending on various choices of moments used for

estimation: forecast errors only (FE), forecast error and disagreement (FE+Disg), and the two

plus uncertainty (FE+Disg+Var).

4.2.1 Cross-moment consistency of each theory

Among the four models under consideration, SE and DENI outperform the others in terms of the

within-model robustness against targeted moments, as shown in the estimation of professional

forecasts in Table 2.

For SE, the estimated quarterly updating rate λ is between 0.22 and 0.36 across different

combinations of moments. The estimate is 0.36 when only FE moments are targeted. It

is smaller, 0.28 and 0.26, respectively, when disagreement and uncertainty are sequentially

included. These imply that the information rigidity is revealed through both low- and high-

order moments.

For DENI, the implied overreaction parameter θ is in the range of 0.76–0.85, suggesting the

existence of overreaction mechanisms in the population. Meanwhile, the noisiness of the private
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Table 2: SMM Estimates of Different Models: Professionals

SE
Moments Used Two-Step Estimate Joint Estimate

λ̂ ρ σω λ̂ ρ σω
FE 0.36 0.99 0.23 0.18 0.97 0.11
FE+Disg 0.28 0.99 0.23 0.22 0.95 0.14
FE+Disg+Var 0.26 0.99 0.23 0.32 0.9 0.22
NI
Moments Used Two-Step Estimate Joint Estimate

σ̂ε σ̂ξ ρ σω σ̂ε σ̂ξ ρ σω
FE 0 0.87 0.99 0.23 0 0.15 0.97 0.11
FE+Disg 1.5 2.26 0.99 0.23 1.48 2.33 0.97 0.11
FE+Disg+Var 2.64 3 0.99 0.23 3 3 0.94 0.16
DE
Moments Used Two-Step Estimate Joint Estimate

θ̂ σθ ρ σω θ̂ σθ ρ σω
FE 0.64 0.58 0.99 0.23 0.81 1.68 0.97 0.11
FE+Disg 0.27 2.2 0.99 0.23 0.38 2.1 0.9 0.2
FE+Disg+Var 0.42 2.1 0.99 0.23 0.33 2.1 0.9 0.23
DENI
Moments Used Two-Step Estimate Joint Estimate

θ̂ σ̂ξ ρ σω θ̂ σ̂ξ ρ σω
FE 0.76 0 0.99 0.23 0.82 0 0.97 0.11
FE+Disg 0.85 0.14 0.99 0.23 N/A N/A N/A N/A
FE+Disg+Var 0.85 0.16 0.99 0.23 N/A N/A N/A N/A

signals σξ is around 0.14–0.16 in percentage points.

In contrast, the NI estimates of σε and σξ are rather volatile across targeted moments. When

only FE is targeted, the estimation points to a highly precise public signal and mildly noisy

private signals. But when disagreement and uncertainty are included, the estimated noisiness

of both signals significantly increases. They are often so large in magnitude that they hit the

externally set upper bound of 3. These are highly noisy signals compared to the conditional

standard deviation of inflation shocks σω = 0.22. Although qualitatively NI mechanisms ac-

commodate patterns of information rigidity similar to SE, quantitatively the required noisiness

of the signals is less sensible to interpret.

DE estimates are also sensitive to moment restrictions, although all the estimates confirm

the existence of a positive mass of overreacting agents. θ̂ is estimated to range from 0.27 to 0.81

depending on the estimation specification. Using disagreement helps identify the population

dispersion in the degree of overreaction σθ, which is estimated to be 2.2. This suggests a

significant amount of heterogeneity in the degree of reaction to the news through the lens of
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DE.

4.2.2 Interactions between expectation formation and inflation process

In all four models, the estimated parameters vary when one jointly estimates expectation and

inflation process parameters. With the benchmark AR(1) process, both the persistence of the

shock to inflation ρ and the overall volatility of the inflation shock σω determine the value of the

corresponding moments under a particular model of expectation formation.24 The differences

between two-step estimation and joint estimation reveal such interdependence.

An alternative interpretation of the joint estimates is that they reveal possibly subjective

models of inflation as perceived by the forecasters, which may be different from the one esti-

mated from historical data retrospectively.25 The joint estimation results seem to support such

an interpretation. The estimates of SE, NI, and DE all produce very similar parameters of ex-

pectation formation, yet rather different inflation persistence and volatility. The survey-implied

persistence of inflation and conditional volatility are both smaller than those estimated solely

based on inflation data. This implies that in addition to information rigidity and overreaction

mechanisms in the canonical versions of these models, allowing for the possibility of a subjective

model is necessary to fit the joint dynamics of inflation and expectations better.

4.2.3 Professionals versus households

Table 3 reports the estimates for households. The updating rate in SE is 0.36, implying around

a one-third chance of updating per month. This is a slightly lower degree of stickiness than

professionals. It is well documented in the literature that household expectations tend to be

more inattentive to economic news than professionals.26 But the SE results of our estimates

show that the major differences are not simply due to the differences in updating rates of

information.

NI estimates of households, when all moments are targeted, reveal extremely noisy signals.

The public signals need to have a noisiness of 2 to 3 percentage points while private signals

need to be between 1 to 3 percentage points.

DE estimates of households suggest a consistently positive and greater degree of overreac-

tion, together with an extremely large dispersion of 5.0, which gives also a positive mass of

24Afrouzi et al. (2023) emphasizes this point in the context of DE. They further address such non-identification
challenges in lab experiments by exogenously altering the persistence of the data-generating process.

25For instance, Jain (2019) uses professional forecasts of inflation to infer the perceived persistence of infla-
tion. Macaulay and Moberly (2022) directly shows survey evidence for the heterogeneity of households in their
perceived persistence of inflation.

26See Cornand and Hubert (2022) for a recent discussion on this point.
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Table 3: SMM Estimates of Different Models: Households

SE
Moments Used Two-Step Estimate

λ̂ ρ σω
FE 0.36 0.98 0.45
FE+Disg 0.36 0.98 0.45
FE+Disg+Var 0.36 0.98 0.45
NI
Moments Used Two-Step Estimate

σ̂ε σ̂ξ ρ σω
FE 0 1 0.98 0.45
FE+Disg 3 1.18 0.98 0.45
FE+Disg+Var 2.06 3 0.98 0.45
DE
Moments Used Two-Step Estimate

θ̂ σθ ρ σω
FE 0.49 0.5 0.98 0.45
FE+Disg 1.91 5 0.98 0.45
FE+Disg+Var 1.03 5 0.98 0.45
DENI
Moments Used Two-Step Estimate

θ̂ σ̂ξ ρ σω
FE N/A N/A 0.98 0.45
FE+Disg -0.54 3 0.98 0.45
FE+Disg+Var -0.35 2.43 0.98 0.45

underreactive agents.

Compared to the previous three models, DENI estimates of the household are significantly

different from that of professionals. The average degree of overreaction θ̂ becomes negative,

taking the value of -0.35 to -0.54, implying underreaction on average. In addition, the noisiness

of private signals is estimated to still be extremely large, taking values of 2.43 to 3.

5 Inflation with Stochastic Volatility (SV)

This section considers an alternative data-generating process of inflation using the Unobservable

Component/Stochastic Volatility (SV) model proposed by Stock and Watson (2007), which is

arguably a more realistic stochastic process of inflation given the presence of macroeconomic

shocks of varying persistence.

The extension to stochastic volatility achieves two objectives. First, a basic inflation process
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with constant volatility does not account for the observed time-varying pattern of forecast

uncertainty nor its correlation with other moments such as disagreement and forecast error

size, as shown in Section 2.3. This is particularly relevant to account for the rapid rise of

disagreement, forecast error, and uncertainty over the inflationary period since 2020.

Second, allowing for SV in the inflation process serves as a robustness test of various theories

of expectation formation because it captures the sensitivity of these theories to the assumed un-

derlying generating process of inflation. This extension provides a more comprehensive analysis

of the relationship between inflation dynamics and expectation formation.

In particular, SV assumes that inflation consists of a permanent ζ and transitory component

η.27 Time variations in the relative size of the volatility of two components σ2
ζ and σ2

η drive time

variations of the persistence of inflation shocks. The logged volatility of the two components

themselves follows a random walk subject to shocks µζ and µη.

yt = ζt + ηt, where ηt = ση,tνη,t

ζt = ζt−1 + zt, where zt = σz,tνε,t

log σ2
η,t = log σ2

η,t−1 + µη,t

log σ2
z,t = log σ2

z,t−1 + µε,t

(21)

The shocks to the level of the two components ηt and zt, and those to their volatility, µη,t

and µz,t, are drawn from the following normal distributions, respectively. The only parameter

of the model is γ, which determines the smoothness of the time-varying volatility.

νt = [νη,t, νz,t] ∼ N(0, I)

µt = [µη,t, µz,t]
′ ∼ N(0, γI)

(22)

I reproduce the estimates of Stock and Watson (2007) using the Markov Chain Monte Carlo

algorithm covering the extended period till March 2023. The estimated time-varying permanent

and transitory volatility of both core CPI and headline CPI is shown in Figure 2. The figure

depicts intuitive patterns of higher permanent volatility of inflation around the 2008 Great

Recession and the COVID era since 2020.

27For such a multi-component formulation of the inflation process in the context of studying expectation
formation, see Kohlhas and Walther (2021); Farmer et al. (2021).
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Figure 2: Stochastic Volatility of Inflation

Note: This figure plots the estimated stochastic volatility of permanent and transitory components of monthly

headline CPI inflation (top) and quarterly core CPI inflation (bottom) using the same approach as in Stock

and Watson (2007).

5.1 Model predictions under SV

The information set necessary for forecasting is different in SV from that in an AR(1) process.

Consider first the benchmark case of FIRE. At the time t, the FIRE agent sees the most

recent and past realization of all stochastic variables as of t, including yt, ζt, ηt, ση,t, and σz,t.

Using the superscript ∗sv to denote the FIRE benchmark prediction under stochastic volatility,

and suppressing the individual subscript i (because there is no disagreement in FIRE), the h-

period-ahead forecast of inflation is equal to the contemporaneous realization of the permanent

component, εt ≡ ζt.

y∗svt+h|t = ζt (23)

Under FIRE, forecast error is simply the cumulative sum of unrealized permanent and tran-
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sitory shocks from t to t + h, which is equal to the following, and disagreement is zero across

agents in FIRE.

FE
∗sv
t+h|t = −

h∑
s=1

(ηt+s + zt+s) (24)

The h-step-ahead conditional variance, or the forecast uncertainty, is time-varying since the

volatility is stochastic now. It is essentially the conditional expectation of the cumulative sum

of future volatility given the current realizations of the component-specific volatility at t.

V ar
∗sv
t+h|t =

h∑
s=1

Et(σ
2
η,t+s) + Et(σ

2
z,t+s)

= σ2
η,t

h∑
s=1

exp−0.5sγ + σ2
z,texp

−0.5hγ

(25)

SESV Under the sticky expectation (SE), an agent whose most recent up-to-date update

happened in t − τ has only seen the realizations of y, ζ, η, ση, and σz till t − τ . The average

forecast is hence the weighted average of all past realizations of the permanent component up

to t.

ysesvt+h|t−τ =
∞∑
τ=0

λ(1− λ)τζt−τ (26)

The distribution of lagged updating is also reflected in the average forecast uncertainty. The

population average uncertainty is a weighted average of FIRE uncertainty at t, t−1...t−τ...t−∞
(Equation 27). The key difference in SV from AR(1) is that the average uncertainty exhibits

a positive serial correlation under SV. Expectations being sticky further increase the positive

serial correlation compared to that in FIRE due to the lag in updating the shocks to the

volatility. The predictions regarding both forecast errors and disagreements under SV are the

same as under the AR(1) model.

V arsesvt+h|t =
∞∑
τ=0

λ(1− λ)τV ar∗svt+h|t−τ (27)
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NISV Under noisy information (NI), in order to forecast future y the agent at time t needs

to form her best nowcast of the permanent component ζt, denoted as ζ̄t|t, using noisy signals

and Kalman filtering. We assume again that the noisy signals of ζt consist of a public signal

spbt and a private signal spri,t containing noises around the true realization of ζt. Following a long

tradition of modeling the signaling-extraction problem in this two-component context, 28 we

further assume the public signal spbt = yt, meaning the inflation realization itself is the public

signal of the permanent component. Accordingly, the transitory shock ηt is equivalent to the

realized noise of the public signal εt in the benchmark NI model with AR(1) process.

Then the average forecast is a Kalman-gain-weighted average of prior belief and new infor-

mation:

ynisvt+h|t = ζ̄t|t = (1− P sv
t H)ynisvt+h−1|t−1 + P sv

t Hζt + P sv
η,tηt (28)

In the above equation, Kalman gain P sv
t = [P sv

η,t, P
sv
ξ,t ] is a function of forecasting uncertainty

V arsvnit|t−1, the constant noisiness of private signal σξ and that of public signal ση,t, which is also

the time-varying volatility of the transitory component of the inflation.

What is different under time-varying volatility is that there is no steady-state Kalman gain

and uncertainty that are independent of time because the underlying volatility of the variable

is time-varying. This also implies that the rigidity induced by the noisiness of information

is state-dependent. In each period, agents in the economy will update their forecasts based

on the realized volatility. In periods with high (low) fundamental volatility, the Kalman gain

from noisy signals is larger (smaller), thus the agents will be more (less) responsive to the new

information. There is no such state-dependence of rigidity in the canonical SE.

The mechanisms of DE and DENI exactly mimic that under AR(1) except that the average

volatility is time-varying now.

5.2 The role of stochastic volatility

Tables 4 and 5 report the estimates under SV, respectively, for the low-inflation pre-pandemic

period and the extended sample covering the high-inflation era between 2020–2023. I juxtapose

the two episodes to explore possible state-dependence of expectation formation, especially given

the rapid rise in inflation in the post-2020 era.

The major finding from the estimates is that SV process significantly improves the within-

model consistency across targeted moments for both types of agents and both sample periods.

This is probably not surprising given that the two-component formulation proves to be a more

28For instance, Fisher et al. (2023) uses such a framework to study long-run inflation expectations.
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Table 4: SMM Estimates of Different Models under Stochastic Volatility: Professionals

Before March 2020 Till March 2023
SE
Moments Used Two-Step Estimate Two-Step Estimate

λ̂ λ̂
FE 0.2 0.3
FE+Disg 0.25 0.36
FE+Disg+Var 0.36 0.36
NI
Moments Used Two-Step Estimate Two-Step Estimate

σ̂pb σ̂pr σ̂pb σ̂pr
FE 0.68 0.24 2.3 3
FE+Disg 0.67 0.24 2.3 3
FE+Disg+Var 0.64 0.21 2.3 3
DE
Moments Used Two-Step Estimate Two-Step Estimate

θ̂ σθ θ̂ σθ
FE -0.03 0.54 0.31 0.41
FE+Disg -0.03 0.16 0.28 0.19
FE+Disg+Var -0.04 0.16 0.31 0.19
DENI
Moments Used Two-Step Estimate Two-Step Estimate

θ̂ σ̂pr θ̂ σ̂pr
FE 0.64 0.47 -0.25 0.93
FE+Disg 0.82 0.26 -0.26 0.93
FE+Disg+Var 0.82 0.24 -0.26 0.93
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Table 5: SMM Estimates of Different Models under Stochastic Volatility: Households

Before March 2020 Till March 2023
SE
Moments Used Two-Step Estimate Two-Step Estimate

λ̂ λ̂
FE 0.27 0.36
FE+Disg 0.2 0.27
FE+Disg+Var 0.26 0.26
NI
Moments Used Two-Step Estimate Two-Step Estimate

σ̂ε σ̂ξ σ̂ε σ̂ξ
FE N/A N/A N/A N/A
FE+Disg N/A N/A N/A N/A
FE+Disg+Var N/A N/A N/A N/A
DE
Moments Used Two-Step Estimate Two-Step Estimate

θ̂ σθ θ̂ σθ
FE -0.09 0.58 -0.07 0.57
FE+Disg 0.29 0.57 0.47 1.07
FE+Disg+Var 0.29 0.57 0.28 1.07
DENI
Moments Used Two-Step Estimate Two-Step Estimate

θ̂ σ̂ξ θ̂ σ̂ξ
FE -0.48 0.64 0.43 0.26
FE+Disg -0.48 0.64 0.43 0.26
FE+Disg+Var -0.48 0.64 0.43 0.26
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realistic foundation of the inflation dynamics, as the previous literature established.

The improvement in model consistency is the most obvious in NI estimates of professionals

in which the benchmark estimates under the AR(1) process produce unrealistically imprecise

signals. With SV, the estimated noisiness of private signals falls into a more reasonable range

of values, i.e., 0.21–0.68. It is more reasonable to assume that forecasters imperfectly observe

the permanent component instead of inflation itself.

Despite this improvement in the cross-moment consistency for the low-inflation sample, NI’s

estimates remain extremely large once the sample includes the recent inflation episodes. In

addition, the estimation of NI for households fails to converge in all specifications. This implies

that the model has a rather poor fit to household expectations even if a more realistic inflation

process is assumed.

Among all the theories, SE gives the closest parameter estimates to that of the benchmark

AR(1). The updating rate is estimated to remain in the range of 0.2–0.36 for both households

and professionals. This suggests that SE has very good consistency against the assumed inflation

process in capturing the overall patterns of the survey expectations. This is consistent with

the preliminary diagnosis simply based on the empirical rankings of moments that are the most

consistent with SE predictions.

Estimates of DENI under SV also point to a similar degree of overreaction of professionals

(θ̂ around 0.6–0.82) and underreaction of households (θ̂ around -0.48) as in the benchmark

AR(1) estimates. The estimated dispersion of private information also remains similar to SV

assumptions.

5.3 Expectation formation when inflation is high

The benchmark estimation is based on the low-inflation sample period before 2020 where our

assumption of the stationary AR(1) process of inflation is a reasonable one. But SV formulation

naturally fits better the dynamics of inflation once we want to examine if the estimates change

when the sample covers an episode of high inflation and volatility, as shown in Figure 2.

For most models, the parameter estimates change significantly between two sample periods.

Such changes do not necessarily invalidate the model mechanisms but instead reflect possible

state-dependence of expectation formation. The difference in estimates between the two sample

periods does suggest that both professionals and households have altered their responsiveness

to the inflation news.

In particular, for professionals, the SE estimates imply an on-average higher updating rate

λ = 0.36. Households’ updating rate is estimated to be higher than in the pre-2020 sample. Both
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exhibit less information rigidity in the form of SE. The estimates of the DE model corroborate

this pattern. Both professionals and households exhibit a higher degree of overreaction. θ̂

changes from −0.03 to 0.3 for professionals and from 0.29 to 0.47 for households. This echoes the

findings of Coibion and Gorodnichenko (2015) that the information rigidity is state-dependent.

Goldstein (2023); Pfäuti (2023) found that inflation expectations exhibit less rigidity when

inflation is elevated.

Different from the finding that information rigidity is lessened in the high inflation episode

for both types of agents, DENI estimates depict a more divergent pattern between the two

types. Professionals have on average turned to underreaction with more dispersed information:

θ̂ changes from 0.82 to -0.26, and σξ changes from 0.24 to 0.93. In contrast, households have

turned to overreaction with less dispersed information: θ̂ changes from -0.48 to 0.43, and σξ

changes from 0.64 to 0.26.

5.4 The final assessment of different models

To summarize, Table 6 reports my evaluation of the four theories under consideration based

on four sensitivity criteria laid out in the previous section. According to this evaluation, SE

seems to capture the average behavior of expectations better than the other three theories, as

it constantly produces a stable range of estimates of the updating rate around 0.2 to 0.3 across

all specifications.

NI, another theory that also features information rigidity and captures similar qualitative

patterns as SE, exhibits less cross-moment consistency. The major weakness of the model is

that it produces unrealistically large sizes of the parameters to match the rigidity of the data.

This is per se not a rejection of the theory. It is indeed found that once the more realistic

inflation process of SV is used, NI estimation produces much more consistent and sensible

values of parameters for professionals. Despite this improvement for professionals, however, NI

proves to be a poor model to fit the patterns of household expectations. Although the previous

literature (Coibion and Gorodnichenko (2012, 2015)) treat SE and NI as two indistinguishable

theories that both produce information rigidity, this paper shows that using information from

uncertainty significantly disciplines the parameter choices and allows me to distinguish the two

theories by their model sensitivity.

Compared to the two rigidity models, a modified canonical DE that allows for heterogeneous

degrees of over/underreaction are estimated to reveal a large degree of heterogeneity ranging

from overreaction to underreaction across individuals. In addition, the model estimates are

rather sensitive along many dimensions. The estimates with the high inflation episode do

suggest a shift toward an average degree of overreaction of both professionals and households.
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A hybrid of DE and NI, as in Bordalo et al. (2020), which accommodates the coexistent

overreacting mechanisms and dispersed noisy information, does improve the fit of the model

and its robustness compared to DE. The estimates feature a reasonable degree of underreaction

(overreaction) of households with dispersed information in the low-inflation environment but

an opposite pattern once the high-inflation episode is included in the estimation.

Table 6: Evaluation of Different Models

Criteria SE NI DE DENI
Sensitive to moments used for estimation? No Yes Yes No
Sensitive to the assumed inflation process? No Yes Yes No
Sensitive to two-step or joint estimate? No No No Yes
Sensitive to the type of agents? No Yes Yes Yes

6 Conclusion

Most studies on expectation formation that document how it deviates from the FIRE bench-

mark have focused on the first moment, namely the mean forecasts and the cross-sectional

dispersion of the forecasts. However, this paper has shown that the surveyed forecasting uncer-

tainty by professionals and households provides useful information for understanding the exact

mechanisms of expectation formation. It not only provides additional reduced-form testing

results of rejecting FIRE, such as persistent disagreements in forecasting uncertainty and its

inefficient revisions, but also provides additional moment restrictions to any particular model

of expectation formation, which helps identify differences across theories.

At least three lines of questions remain unresolved in this paper and require future research.

First, this paper focuses on a selective list of models of expectation formation and inevitably

omits others that are likewise proven to match certain aspects of surveyed inflation expectations,

such as adaptive learning (Marcet and Sargent, 1989; Evans and Honkapohja, 2012), experience-

based learning (Malmendier and Nagel, 2015), heterogeneous models (Patton and Timmermann,

2010; Farmer et al., 2021), and asymmetric attention (Kohlhas and Walther, 2021). It would

be fruitful to explore the corresponding predictions of these models about uncertainty. Second,

throughout the analysis we maintained the normality/symmetric assumptions of the shocks

and ignored beliefs in tail events or even higher moments. It would be natural to explore

how different theories of expectation formation may contain different predictions on tail beliefs.

Finally, although this paper focuses only on macroeconomic expectations regarding inflation,

it is worth asking if the belief formation regarding individual variables such as income bears

similar mechanisms and matches the observed empirical patterns of surveyed expectations and

30



risks.29

29Here are a few recent studies on income/wage/unemployment/job search expectations: Mueller et al. (2021);
Wang (2022); Koşar and Van der Klaauw (2022); Jäger et al. (2022); Caplin et al. (2023).
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Koşar, Gizem and Wilbert Van der Klaauw, “Workers’ perceptions of earnings growth

and employment risk,” Unpublished paper, 2022.

35



Lahiri, Kajal and Xuguang Sheng, “Measuring forecast uncertainty by disagreement: The

missing link,” Journal of Applied Econometrics, June 2010, 25 (4), 514–538.

Lucas, Robert E, “Expectations and the neutrality of money,” Journal of economic theory,

1972, 4 (2), 103–124.

Macaulay, Alistair and James Moberly, “Heterogeneity in imperfect inflation expectations:

Theory and evidence from a novel survey,” 2022.
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Appendix

Detailed derivation
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NI

The steady-state nowcasting uncertainty Varniss is solved using the updating equation (Equation

10).
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DENI

Current forecast error is
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= θρ(FE∗t+h−1|t−1 − FE
deni

t+h−1|t−1) + ρh(((1 + θ)Pε − 1)ωt + (1 + θ)Pεεt) + FE∗t+h|t

(34)

Rearranging it, we get

FE
deni

t+h|t − FE∗t+h|t = −θρ(FE
deni

t+h−1|t−1 − FE∗t+h−1|t−1) + ρh((1 + θ)Pε − 1)ωt + ρh(1 + θ)Pεεt(35)

Set h = 1, we get

FE
deni

t+1|t − FE∗t+1|t = −θρ(FE
deni

t|t−1 − FE∗t|t−1) + ρ((1 + θ)Pε − 1)ωt + ρ(1 + θ)Pεεt (36)

When θ = 0, Pε = 1, and εt = 0, the equation collapses to FIRE.
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Which is equivalent to the following:

FE
deni

t+1|t + ωt+1 = −θρ(FE
deni

t|t−1 + ωt) + ρ((1 + θ)Pε − 1)ωt + ρ(1 + θ)Pεεt

→ FE
deni

t+1|t = −θρ(FE
deni

t|t−1 + ωt) + ρ((1 + θ)Pε − 1)ωt + ρ(1 + θ)Pεεt

→ FE
deni

t+1|t = −θρFEdeni

t|t−1 − θρωt + ρ((1 + θ)Pε − 1)ωt + ρ(1 + θ)Pεεt − ωt+1

= −θρFEdeni

t|t−1 − θρωt + ρ((1 + θ)Pε − 1)ωt + ρ(1 + θ)Pεεt − ωt+1

= −θρFEdeni

t|t−1 − (ρ(1 + θ)Pε − ρ− θρ)ωt + ρ(1 + θ)Pεεt − ωt+1

= −θρFEdeni

t|t−1 − (ρPε + ρθPε − ρ− θρ)ωt + ρ(1 + θ)Pεεt − ωt+1

= −θρFEdeni

t|t−1 − ρ(Pε + θPε − 1− θ)ωt + ρ(1 + θ)Pεεt − ωt+1

= −θρFEdeni

t|t−1 + ρ((1 + θ)(1− Pε))ωt + ρ(1 + θ)Pεεt − ωt+1

(37)

This means

FE
deni2

•+1|• =
σ2
ω + ρ2(1 + θ)2(1− Pε)2σ2

ω + ρ2(1 + θ)2P 2
ε σ

2
ε

1 + θ2ρ2
(38)

Cross-sectional dispersion of forecast uncertainty

Persistent dispersion in expectations has been among the most commonly cited evidence that

is inconsistent with the assumption of identical expectations predicted by FIRE (Mankiw et

al. (2003)). A similar argument can be made with the dispersion in forecasting uncertainty, as

FIRE predicts individuals share an equal degree of uncertainty.30

Figure 3 plots the median uncertainty along with its 25/75 percentiles in both SCE and

SPF. There is persistent dispersion in uncertainty across agents. The dispersion in uncertainty

of households is much greater than that of the professionals. The IQR of the uncertainty

of households is around 150-200 times(12–14 times in standard deviation terms) of that of

professional forecasters.

One difference in the distribution of uncertainty between households and professionals is

that the distribution of the former is more skewed toward the right (higher uncertainty), while

professional forecasters disagree in uncertainty more symmetric around its cross-sectional mean.

30In contrast, SE predicts that the uncertainty of individuals differs in that agents are not equally updated at
a point in time. NI generates a homogeneous degree of uncertainty only under the stringent conditions of equal
precision of signals and the same prior for uncertainty (Equation 12). DE predicts an equal degree of uncertainty
across agents (Equation 16). Therefore, taken by the face value, the presence of dispersion of uncertainty across
agents is not consistent with predictions of FIRE, or the canonical version of NI and DE.
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Figure 3: Dispersion of Uncertainty

Another pattern worth discussing in Figure 3 is that there is a notable rise in the dispersion of

uncertainty along the rapid rise in inflation in 2020, which was primarily driven by an increase

in uncertainty reported in the upper end of the forecasts.

Reduced-form tests with forecast errors

The FE-based null-hypothesis of FIRE uses the moment restrictions on forecast errors. In

plain words, the null hypotheses of the three tests are the following: First, since the forecasts

are on average unbiased according to FIRE, forecast errors across agents should converge to

zero in a large sample. Second, forecast errors of non-overlapping forecasting horizon are not

serially correlated. Third, forecast errors cannot be predicted by any information available at

the time of the forecast, including the mean forecast itself and other variables that are in the

agent’s information set. This follows from Equation 2. In addition, I include what is called

a weak version of the FE-based test, which explores the serial correlation of forecast errors in

overlapping periods, i.e., 1-year-ahead forecasts within 1 year. The forecast errors are correlated

to the extent of the realized shocks in the overlapping periods. So the positive serial correlation

does not directly violate FIRE. But the correlation of overlapping forecast errors still contains

useful information about the size of the realized shocks.

Individual-level data are used whenever possible, using the panel structure of both surveys.

Since test 2 and 3 require individual forecasts in vintages that are more than 1 year apart while

SCE only surveys each household for 12 months, the two tests are done with the population

average expectations for SCE. Also, the regressions are adjusted accordingly depending on the

quarterly and monthly frequency of SPF and SCE. Since these regressions are based on 1-year

inflation in overlapping periods, Newy-West standard error is computed for hypothesis testing.

First, all three forecast series easily reject the null hypothesis of unbiasedness at the sig-

nificance level of 0.1%. There are upward biases in both professional forecasts of core PCE
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inflation and households’ forecast of headline inflation,31 while at the same time professionals

underpredicted core CPI inflation over the entire sample period. This was primarily driven by

the underprediction of inflation over the recent 2 years since the pandemic.

Second, the average point forecast 1 year ago predicts the forecast errors of both groups at

the significance level of 0.1%. For headline CPI inflation, for instance, a one percentage point

inflation forecast corresponds to 0.35 percentage points of the forecast errors 1 year later. Thus,

test 2 in Table 7 easily rejects the second hypothesis test of FIRE that past information does

not predict future forecast errors. This suggests that both types of agents inefficiently use all

information when making the forecasts.

Third, forecast errors are positively correlated with the forecast errors 1 year ago, with a

significant coefficient ranging from 0.35 to 0.572. A higher positive auto-correlation coefficient

of forecast errors by households is consistent with the common finding that households are

subject to more information rigidity than attentive professionals.

Lastly, test 4 in Table 7 presents a higher serial correlation of forecast errors produced within

a year. For SPF forecasts, the serial correlation does not exist beyond two quarters, implying

the relative efficiency of professional forecasts. For households, the forecast errors are more

persistent over the entire year, in that current forecast errors are correlated with all past forecast

errors over the past three quarters. Although the persistence of 1-year forecast errors within 1

year does not directly violate FIRE, the fact that households’ forecast errors are more persistent

than professionals’ indicates that the former group is subject to a higher degree of rigidity than

the latter one.

Reduced-form tests with mean revision

Table 8 reports the results for mean revisions (InfExp Mean rv). The first column of each panel

regards the regression on a constant. Average revisions of forecasts of CPI and PCE by SPF

inflation are both negative and significant, indicating an average downward revision over the

sample period. The second to fourth columns in the upper panel examine the dependence of

revisions on past information beyond forecast horizons. In particular, revisions are negatively

correlated with the median SPF forecasts made four quarters before (InfExp Mean ct50) and

are also serially correlated four or five quarters apart, and the coefficients are positive and

significant. This implies that individual revisions in forecasts react to lagged information, some

evidence against the null hypothesis of FIRE.

Similar to professionals, average household revisions in SCE also positively depend on past

revisions made 2 years before. Since individual revisions are not available, time-fixed effect

31Coibion et al. (2018) finds the same upward bias for firms’ managers.
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Table 7: Tests of Rationality and Efficiency Using Forecast Errors

SPF CPI SPF PCE SCE
Test 1: Bias
Constant -3.021*** 0.460*** 1.673***

(0.242) (0.047) (0.008)
N 5510 1610 112668
Test 2: FE depends on past information
Forecast 1-yr before 0.350*** 0.460*** 4.190***

(0.035) (0.047) (0.659)
Constant -3.452*** -2.333*** -12.92***

(0.386) (0.192) (2.213)
N 3945 1610 84
R2 0.828 0.826 0.311
Test 3: FE of non-overlapping forecast horizons are serially correlated
Forecast Error 1-year before 0.350*** 0.460*** 0.572**

(0.035) (0.047) (0.195)
Constant 0.314 -1.351*** -0.149

(0.231) (0.156) (0.445)
N 3945 1610 84
R2 0.828 0.826 0.0957
Time FE Yes Yes No
Test 4: Overlapping FE are serially correlated

Forecast Error 1-q before 0.502*** 0.551*** 0.327***
(0.060) (0.075) (0.010)

Forecast Error 2-q before 0.0901 0.231*** 0.341***
(0.064) (0.060) (0.024)

Forecast Error 3-q before 0.146* 0.0693 0.333***
(0.065) (0.052) (0.023)

Constant 1.147*** -0.356*** 0.509***
(0.224) (0.058) (0.035)

N 2971 1338 4432
R2 0.890 0.903 0.243

Note: White standard errors reported in the parentheses of estimations. *** p<0.001, ** p<0.01, and *

p<0.05.

cannot be controlled to absorb all common contemporary innovations. Instead, I control for

the average forecast error (InfExp FE) that has just been realized in the same period, meant

to capture innovations in the information set common to all forecasters. It is found to be

negatively correlated with average revisions, implying information rigidity.32

32Coibion and Gorodnichenko (2012) show that information rigidity implies that past forecast errors and
current revisions are positively correlated, where forecast errors are defined as the opposite sign as in this paper.
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Inefficient revisions in uncertainty

Under the AR(1) process of inflation, FIRE predicts an unambiguous reduction in uncertainty

as one approaches the date of realization, where the drop is exactly equal to the conditional

volatility of the realized shocks σ2
ω.

Figure 4 plots the average revision in uncertainty in SPF and SCE. Since the individual-

specific revisions are not available in SCE, I instead calculate the revisions in the average

uncertainty across all respondents or, more specifically, the difference between 1-year-ahead

uncertainty and 3-year-ahead forecasts made 2 years ago. In most of the years, both histograms

suggest that revisions are left-skewed relative to zero. This implies that, on average, forecasters

feel more certain about their nowcasts relative to their forecasts made before. However, over

the entire sample, there is always a positive fraction of forecasters who revise uncertainty

upward, which is inconsistent with the benchmark prediction with the AR(1) process of inflation.

Positive uncertainty revisions were particularly common in the sample after 2020, a period with

rapidly rising inflation caused by a combination of various demand and supply shocks.

It is worth noting that the existence of positive uncertainty revisions does not necessarily

reject the FIRE assumption in more general conditions. The pattern could also be reconciled

by alternative models where the inflation volatility is stochastic instead of deterministic. With

the former scenario, newly arrived information may cause an upward revision in the conditional

perceived uncertainty of inflation, even though uncertainty in the period elapsed has resolved.

Therefore, in the latter part of this paper, I explore the patterns of uncertainty in conjunction

with the alternative assumption of stochastic volatility.

A formal test based on uncertainty takes the following form.33

Vari,t|t − Vari,t|t−1 = αvar + βVar(Vari,t−1|t−1 − Vari,t−1|t−2) + ψvart + ζvari,t (39)

Under FIRE, individual uncertainty revisions are all identical and equal to the innovation

of the conditional volatility of inflation. This means that under FIRE the size of revisions in

uncertainty is the same by all forecasters and hence should be fully absorbed by either the time-

invariant constant αvar or the time-varying fixed effect ψvart . Meanwhile, the auto-correlation

coefficient βvar takes the value of zero under FIRE. A higher value of βvar indicates a slower

speed of the drop in uncertainty, or forecast inefficiency, possibly due to information rigidity.

The two aforementioned regressions need to be adapted to be strictly consistent with the

33This in the spirit of forecasting efficiency by Nordhaus (1987). It is an extension of revision tests on mean
forecasts by Fuhrer (2018) to uncertainty.
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Figure 4: Distribution of Uncertainty Revision

Note: The revisions in SPF (left) are calculated at the individual level and are computed as the difference

between forecast uncertainty in quarter q about current-year Q4/Q4 inflation and that of the next-year Q4/Q4

inflation in quarter Q− 4. The revisions in SCE (right) are calculated at the population level, and it is

computed as the difference between the average 1-year-ahead uncertainty at month m and the 3-year-ahead

uncertainty at m− 24.

specific data structure in SPF and SCE. In particular, the revision in SPF is computed between

the forecasts of the current-year Q4/Q4 inflation and the forecasts made four quarters before

regarding the next-year Q4/Q4 inflation. The lagged revision, a measure of past information,

was made four quarters before. For SCE, revisions and lagged revisions are relative to forecasts

made 24 months before. This is critical, as revisions are expected to be correlated within the

forecast horizon even under the assumption of FIRE. Furthermore, since individual revisions

are not observed in SCE, I can only run regressions using average expectations and uncertainty.

Hence, I cannot control for time fixed effects.

Table 9 reports regression results. The first column tests the mean revision against the null

hypothesis of zero. For professional forecasters, the mean revisions in uncertainty are negative

and statistically significant, confirming our observation from Figure 4 that forecasters are more

certain about current inflation compared to their previous-year forecast.

The second to fourth column in the bottom panel of Table 9 shows that revision in the uncer-

tainty of non-overlapping forecasts is serially correlated in both SPF and SCE. SPF forecasters’

uncertainty revision from 1 year ago positively predicts current revisions in uncertainty. With

the aggregate information innovation to be absorbed by time fixed effects and the constant, the

coefficients of individual past revisions remain significant.

Households in SCE exhibit similar patterns of rigidity despite some differences with SPF

professionals. In particular, the average revision in uncertainty between 3-year-ahead to 1-
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year-ahead forecasts is significantly negative when past revisions and squared realized forecast

errors are controlled (InfExpFE 2). This implies that, on average, households are also more

certain in their 1-year-ahead forecast than in their 3-year-ahead forecast. In addition, past

uncertainty revisions are significantly correlated with current revisions, although negatively.

Upward revisions 1 year ago are usually followed by downward revisions later. The coefficients

remain significant even though I control for the size of realized average forecast errors over the

past year. Higher realized squared forecast errors predict a larger uncertainty revision. This

is different from the prediction of FIRE, according to which the two, on average, should be

negatively correlated one by one, i.e., the resolution of forecast errors is equal to the reduction

in uncertainty over the same period.

In summary, the empirical tests in this section use the uncertainty revision to show additional

evidence for the deviation from FIRE in expectation formation. In particular, information

rigidity of incorporating new information implies inefficiency of revisions in forecasts and a

drop in uncertainty. The reduced-form results confirm this pattern. The next section compares

a variety of candidate theories of expectation formation that may lead to such patterns.
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