Consumer Bankruptcy: A Fresh Start - *Livshits, MacGee, and Tertilt (2007)*

Discussant: Tao Wang (BoC) Labor, Firms, and Macro Reading Group February 10, 2024

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment
- A trade-off between smoothing across states or across time
 - FS: bankruptcy is good insurance for bad luck insurance across states, at the cost of smoothing across time

Fresh start or not for bankrupt consumers?

- FS: debt charged off
- NFS: debt restructuring with limited garnishment
- A trade-off between smoothing across states or across time
 - FS: bankruptcy is good insurance for bad luck insurance across states, at the cost of smoothing across time

Therefore, which one yields better welfare gain is ambiguous

Preview of the findings

- FS approach potentially increases welfare in the U.S.
- But, it depends on uncertainty levels and life-cycle earnings
- "No Fresh Start" might be preferable in cases of large temporary income shocks or the absence of expense shocks

Model

A life-cycle heterogeneous-agent model with bankruptcy choices

$$\sum_{j=1}^{J} \beta^{j-1} u\left(\frac{c_j}{n_j}\right)$$
$$y_j^i = a_j^i \bar{e}_j$$
$$a_j^i = z_j^i \eta_j^i$$

- $\Pi(z' \mid z)$: transition probs of persistent inc shks
- $\kappa \ge 0$, i.i.d. expenditure shocks

Consumer's problem

Repaying debt

$$V_{j}(d, z, \eta, \kappa) = \max_{c, d'} \left[u\left(\frac{c}{n_{j}}\right) + \beta E \max\left\{ V_{j+1}\left(d', z', \eta', \kappa'\right), \bar{V}_{j+1}\left(z', \eta'\right) \right\} \right]$$

s.t. $c + d + \kappa \leq \bar{e}_{j} z \eta + q^{b}\left(d', z, j\right) d'$

- debt price q is a function of debt amt d, income state z and age j
- It is to be determined in equilibrium by competitive lenders

With FS

File for bankruptcy...

$$\bar{V}_{j}(z,\eta) = u\left(\frac{c}{n_{j}}\right) + \beta E \max\left\{V_{j+1}\left(\underbrace{\overset{`'FS''}{0}}_{0}, z', \eta', \kappa'\right), \bar{W}_{j+1}\left(z', \eta', \kappa'\right)\right\}$$

$$c = \bar{e}_{j}z\eta - \underbrace{\Gamma}_{\text{Garnishment}}, \quad \Gamma = \gamma \bar{e}_{j}z\eta$$

- $I_j(d+\kappa,z,\eta) = 1$ if $\overline{V}_j(z,\eta) > V_j(d,z,\eta,\kappa)$
- $d + \kappa$ charged off: dropped as a state variable
- No savings in the period of bankruptcy
- Cannot file bankruptcy for two periods in a row, so another value function *W* is needed

With FS

Cannot file bankruptcy twice in a row, but could miss paying the expenditure bill...

V func of not paying bill

$$\widetilde{W_j(z,\eta,\kappa)} = u\left(\frac{c}{n_j}\right) + \beta E \max\left\{V_{j+1}\left(d',z',\eta',\kappa'\right), \overline{V_{j+1}}\left(z',\eta'\right)\right\}$$
$$c = \overline{e}_j z \eta (1-\gamma), \quad d' = (\kappa - \gamma \overline{e}_j z \eta) (1+\overline{r})$$

- partial payments to the bill κ and the rest carries over to the next period
- with an interest rate \bar{r}

With NFS

$$\begin{split} V_j^{NFS}(d,z,\eta,\kappa) \\ &= \max_{c,d',I} \left[u\left(\frac{c}{n_j}\right) + \beta E V_{j+1}^{NFS}\left(d',z',\eta',\kappa'\right) \right] \\ \text{s.t.} \ c+d+\kappa &\leq \bar{e}_j z \eta + q^b \left(d',z,j\right) d' \quad \text{if } I=0 \\ c &= (1-\gamma) \bar{e}_j z \eta \quad \text{if } I=1 \\ \underbrace{d'}_{\text{rolled-over debt}} &= \max\left\{ \left(d+\kappa-\gamma \bar{e}_j z \eta\right), 0\right\} (1+\bar{r}) \quad \text{if } I=1 \end{split}$$

• No debt is charged off, simply rolled over with wage garnishment

Debt price

$$\begin{split} q^{b}\left(d',z,j\right) &= \left(1 - \underbrace{\frac{\rho(d',z,j)}{\theta\left(d',z,j\right)}}_{p \text{ price of safe debt} = (1+r^{s}+\tau)} \right) \bar{q}^{b} \\ &+ \theta\left(d',z,j\right) E\left(\left.\frac{\Gamma}{d'+\kappa'}\right| I = 1\right) \underbrace{\bar{q}^{b}}_{p \text{ price of safe debt} = (1+r^{s}+\tau)} \end{split}$$

$$q^{NFS} (d', z, j)$$

$$= (1 - \theta (d', z, j)) \bar{q}^{b} + \theta (d', z, j)$$

$$\times E \left(\frac{\Gamma + q (d'', z', j + 1) d''}{d' + \kappa'} \middle| I = 1 \right) \bar{q}^{b}$$

$$\underbrace{d''}_{\text{rolled over debt}} = \max \left\{ d' + \kappa' - \Gamma, 0 \right\} (1 + \bar{r})$$

Equilibrium

Given risk-free rate q^s , \bar{q}^b , consists of value funcs V, \bar{V} W, policies c,d',I, default probs θ and price funcs \bar{q}^b such that

- value funcs satisfy as defined and policies are optimal given \bar{q}^b
- bond price func $\bar{q}^b()$ is determined by zero profit condition
- default probs are correct: $\theta(d', z, j) = E(I_{j+1}(d' + \kappa', z', \eta'))$

Solution

- Threshold policies : $I(d, z, \eta, \kappa) = 1$ if $d + \kappa > \overline{d}$
 - because V (V func of repaying) decreases with d and \bar{V} (V func of bankruptcy) is independent of d
- Backward value func iteration from period J to 1
- maybe also can iterate over debt price func?

Calibration

- Standard life cycle parameters
- Bankruptcy
 - **\bar{r}** = 20%: penalty rate on rolled over debt
 - $\gamma = 35\%$: garnish ratio of income indirectly calibrated to match debt to income ratio
 - κ: out-of-pocket medical bills, and also "divorce shocks" (1.2% per year) and "child shocks" (0.5% per year)

Shock	Magnitude (\$)	Fraction of	Drobability	
		avg. income	riobability	
κ_1	\$32,918	0.264	$7.104\%(\pi_1)$	
κ_2	\$102,462	0.8218	$0.46\%(\pi_2)$	

Model versus Data

Results	Rule	<u> </u>	Defaults	$\operatorname{Avg} r^b$
Benchmark	FS	8.4%	0.71%	11.6%
US data, Avg. 1995-1999	FS	8.4%	0.84%	11.2 - 12.8

Life cycle profile

Defaults by reason

	Expense shock			
	Low	High	None	Total
No decrease in income	63.7%	9.9%	1.6%	75.2%
Fall in persistent income only*	8.1%	1.5%	5.3%	14.9%
Negative transitory shock only**	7.0%	1.1%	0.1%	8.3%
Fall in persistent income and	0.9%	0.2%	0.6%	1.7%
negative transitory shock				
Total	79.7%	12.7%	7.6%	100.0%

Endogeneous borrowing constraints

Welfare comparison

		Debt to		Better	
Results	Rule	Earnings	Defaults	rule	ECV
Benchmark	FS	8.4%	0.71%		
	NFS	14.8%	0.53%	FS	0.06%

Expenditure shocks matter

Different life-cycle shapes: FS versus NFS

Smoothing across states versus across time

• Under benchmark: FS is welfare improving

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more
- FS benefits high-income people and hurts low-income people with a bigger variance of the persistent income shocks

- Under benchmark: FS is welfare improving
- But NFS is more appealing if transitory income shocks matter more
- FS benefits high-income people and hurts low-income people with a bigger variance of the persistent income shocks
- A flatter life-cycle income profile makes smoothing over time less important, hence favors FS

References I

Livshits, Igor, James MacGee, and Michele Tertilt (2007). "Consumer bankruptcy: A fresh start". *American Economic Review* 97.1, pp. 402–418.