Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

Learning from Friends in a Pandemic: Social Networks and the Macroeconomic Response of Consumption

Christos A. Makridis (Columbia Business School and Stanford University) Tao Wang (JHU)

January 7, 2022 ASSA 2022 Session: Expectations, Beliefs and Behaviors during the Pandemic

Social networks matter for macroeconomy

Social media/networks have become a primary channel for disseminating and acquiring information

- Social influences \rightarrow expectations \rightarrow consumption decisions
 - Housing investment and mortgage choices (Bailey et al., 2018a, 2019; Bayer et al., 2021);
 - Stock market investment (Hong et al., 2004, 2005);
 - COVID19 and precautionary behaviors (Bailey et al., 2020)
- Other channels **not** in this paper:
 - Peer effects (Heffetz, 2011; Moretti, 2011; Bursztyn et al., 2014; De Giorgi et al., 2020)
 - Social contagion (Fowler and Christakis, 2008; Kramer et al., 2014)

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

Identification via a natural experiment

- Identification challenges due to reflection problem (Manski, 1993, 2000)
- What we use: the exogenous variation in the social network exposure to regional coronavirus cases
 - No endogenous network formation: predetermined social connections in 2019/2016
 - The infection in a geographically distant friend's county is exogenous given limited physical mobility during the period
 - Expectation channel >> preference channel
 - More time spent online during this period
 - Not your neighbours, less likely peer effects

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

This paper

Empirical results

- More cases/deaths in socially connected counties \rightarrow More consumption spending declines
- Conditional on location/time FE + local cases/deaths
- Larger declines in contact-based consumption categories
- Heterogeneity analysis lines up with theory
- **2** Quantitative consumption model
 - Under incomplete market /incomplete information
 - Naive learning on social network
 - Aggregate effects depends on
 - Degree of social communication
 - Location of the initial shock
 - Asymmetry of social connections

$\begin{array}{c} \text{Motivation} \\ \text{000} \bullet \end{array}$	Empirical identification	Model 0000000	$\begin{array}{c} \text{Counterfactuals} \\ \text{00000} \end{array}$	Summary 0	Appendix 0000000000	References
Backgr	round					

- Shock responses by consumption (Zeldes, 1989; Pistaferri, 2001; Gourinchas and Parker, 2002; Di Maggio et al., 2017; Fuster et al., 2018; Souleles, 1999; Johnson et al., 2006; Agarwal et al., 2007)
- Expectation formation via experiences/social interactions: (Carroll, 2003; Cogley and Sargent, 2008; Malmendier and Nagel, 2016; Binder and Makridis, 2020; Kuchler and Zafar, 2019; Malmendier and Nagel, 2011; Makridis, 2020; Makridis and McGuire, 2020; Malmendier et al., 2018; Giuliano and Spilimbergo, 2014; Malmendier and Shen, 2018)

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	•00000000	0000000	00000	0	0000000000	

Empirical identification

Motivation 0000	Empirical identification $0 \bullet 000000000$	Model 0000000	Counterfactuals 00000	Summary 0	Appendix 0000000000	References
Data						

- Consumption spending (Facteus):
 - 5.18 million debit card users
 - 194 million USD daily average spending
 - 2.3 million average daily transactions
 - zip-code levels collapsed into 3051 counties
 - with MCC codes (merchant type information)
- Social network connectedness index on Facebook (SCI) (Bailey et al., 2018b)
 - Scaled pairwise friendship ties between two counties
 - based on 2019/2016 vintages

Measuring social network exposure to COVID-19

$$COVID_{ct}^{SCI} = \sum_{c'} (COVID_{c't} \times SCI_{c,c'})$$

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	00000000	0000000	00000	0	0000000000	

Benchmarking consumption

Contact consumption approximated by census retail data on "drinking and eating place" and "health and personal care"

We estimate panel fixed effects regressions of the form:

$$Y_{ct} = \gamma COVID_{ct}^{SCI} + \phi COVID_{ct}^{d} + \zeta_c + \lambda_t + \epsilon_{ct}$$

- γ : consumption elasticity with respect to SCI cases
- ϕ : elasticity to local coronavirus cases
- county-fixed effects + day-of-the-year fixed effects
- Robustness: controlling cases/deaths weighted by physical distance proximity
- \bullet Robustness: state \times month fixed effects
- Robustness: exclude counties in the same state

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	00000000	0000000	00000	0	0000000000	

Baseline results: COVID19 cases

Dep. var. =	1	og(Consur	nption Ex	penditures	5)
	(1)	(2)	(3)	(4)	(5)
Has SAHO			058^{***}	.007	058***
			[.005]	[.012]	[.005]
log(SCI-weighted Cases)	051^{***}	015^{*}	014^{*}	003	
	[.007]	[.008]	[.008]	[.009]	
\times SAHO				024^{***}	
				[.004]	
log(SCI-weighted Cases, Other States)					016^{*}
					[.009]
log(County Cases)		015^{***}	006*	006	006*
		[.004]	[.004]	[.004]	[.004]
log(County Deaths)		015^{***}	018^{***}	018^{***}	017^{***}
		[.004]	[.003]	[.003]	[.003]
R-squared	.97	.97	.97	.97	.97
Sample Size	351645	351645	351645	351645	351645
County FE	Yes	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes	Yes
State Policies	No	No	Yes	Yes	Yes
State x Month FE	No	No	Yes	Yes	Yes

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

Baseline results: COVID19 deaths

Dep. var. =	$\log(\text{Consumption Expenditures})$					
	(1)	(2)	(3)	(4)	(5)	
Has SAHO			056***	044***	060***	
			[.005]	[.005]	[.005]	
log(SCI-weighted Deaths)	062^{***}	042^{***}	062^{***}	049^{***}		
	[.008]	[.011]	[.012]	[.014]		
\times SAHO				026^{***}		
				[.005]		
log(SCI-weighted Deaths, Other States)					058***	
					[.012]	
log(County Cases)		014^{***}	003	003	005	
		[.004]	[.003]	[.003]	[.003]	
log(County Deaths)		002	006*	008**	007^{*}	
		[.004]	[.004]	[.004]	[.004]	
R-squared	.97	.97	.97	.97	.97	
Sample Size	351644	351644	351644	351644	351644	
County FE	Yes	Yes	Yes	Yes	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	
State Policies	No	No	Yes	Yes	Yes	
State x Month FE	No	No	Yes	Yes	Yes	

Heterogeneity by consumption category

Heterogeneity in the consumption elasticity

- Larger responses in low income counties, younger counties, more populated counties
- Larger responses in counties with higher employment shares in digital-intensive and teleworking sectors

Motivation Empi	irical identification	Model	Counterfactuals	Summary	Appendix	References
0000 0000	00000	0000000	00000	0	0000000000	

Cross-country evidence

Table 3:	Consumption	Responses	to (COVID-19	Information	from	Other	Countries
----------	-------------	-----------	------	----------	-------------	------	-------	-----------

Dep. var. $=$		$\log(\text{spending})$								
log(SCI-weighted cases of the country)	ITA 007*** [.001]	ITA	SPA 008*** [.001]	SPA	FRA 011*** [.001]	FRA	SK 011*** [.001]	SK		
log(SCI-weighted deaths of the country)		052***		072***		014***	• •	081***		
		[.001]		[.001]		[.001]		[.002]		
log(County Cases)	005	.015***	005	.003	005	005	005	.012***		
	[.003]	[.004]	[.003]	[.004]	[.003]	[.003]	[.003]	[.004]		
log(County Deaths)	004	025	004	019	004	004	004	025		
	[.016]	[.018]	[.016]	[.018]	[.016]	[.016]	[.016]	[.018]		
R-squared	.97	.98	.97	.98	.97	.97	.97	.98		
Sample Size	78550	62925	78550	34148	78550	78550	78550	65552		
County FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
Day FE	No	No	No	No	No	No	No	No		

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	•000000	00000	0	0000000000	

Learning on the social network

Belief updating via social network

 ψ_t: an aggregate state of the economy not perfectly observable and to be learned via local signals ξ_{i,t}

$$\tilde{\psi}_{i,t} = \underbrace{(1-\lambda)\hat{\psi}_{i,t}}_{\text{private updating}} + \underbrace{\lambda \sum_{j=1}^{N} w_{i,j}\tilde{\psi}_{j,t-1}}_{\text{social communication}}$$
$$\hat{\psi}_{i,t} = (1-k) \underbrace{\tilde{\psi}_{i,t-1}}_{\text{prior belief}} + k \underbrace{s_{i,t}}_{\text{local news}}$$

- λ : the degree of social communication
- k: individual responsiveness to local news
- $w_{i,j}$: the "listening weight" that *i* gives to *j*'s belief

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	000000	00000	0	0000000000	

The Listening Matrix

- The diagonal: "self-influence"
- Blocks along the diagonal: within-state influence

Aggregate belief dynamics

Belief dynamics depend on

- λ : the degree of social communication
- k: individual responsiveness to the news
- W: symmetry of social network

More

Consumption during the Pandemic

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

A consumption model before/during the pandemic

• Incomplete market

• uninsured income risks

- borrowing constraints
- Local infections $\xi_{i,t}$
 - subject to aggregate spreading ψ_t and local shocks
 - it affects
 - idiosyncratic income
 - taste torward the contact consumption
- Incomplete information
 - about the ψ_t : aggregate R0 of the Covid
 - learned from local infections and social communications

Optimal consumption

More

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	000000	00000	0	0000000000	

Benchmark Pre-Pandemic Consumption

We use the cross-county standard deviation in residual total consumption of 0.89 (controlling for county population and demographics) to discipline our pre-pandemic state.

Model Calibration

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	0000	0	0000000000	

Counterfactuals

Experiment 1: Degree of social communication

Following a 10% increase in infection at one third of the influential nodes...

Experiment 2: location of the shock

Following a 10% increase in infection at the top/middle/bottom third agents in terms of influence...

Experiment 3: Structure of the network

- $\operatorname{std}(d_{2016}) < \operatorname{std}(d_{2019})$
- Following a 10% increase in infection at one third of the influential nodes...

Experiment 3: Structure of the network

Following a 10% increase in infection at one third of the influential nodes...

Motivation 0000	Empirical identification	Model 0000000	Counterfactuals 00000	Summary •	Appendix 0000000000	References
Conclu	Ision					

Additional evidence for social network influences on economic expectations

Macroeconomic shock propagation depends on

- the degree of social communication
- the location of the shocks
- social network structure

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	•000000000	

Relation to the literature

- private updating
 - Kalman filtering/efficient learning:
 - $\kappa_{i,t}$ dynamically adjusted based on the signals' precision (Woodford, 2001)
 - $\bullet\,$ stead-state gain: k^*
 - Constant-gain learning: $\kappa_{i,t} = k > 0$
 - $k < k^*$: underreaction/inattention (Mankiw and Reis, 2002; Sims, 2003; Coibion and Gorodnichenko, 2015)
 - $k > k^*$: over reaction, a la diagnostic expectation (Bordalo et al., 2020)

• social communication (SC) via naive learning (DeGroot, 1974; DeMarzo et al., 2003)

- $\lambda = 0$: no SC
- $\lambda = 1$: full SC
- rational benchmark (under imperfect information)
 - $\kappa_{i,t} = k^*$ and $\lambda = 0$: no SC and efficient private updating

Motivation 0000	Empirical identification	Model 0000000	Counterfactuals 00000	Summary 0	Appendix 0000000000	References

Social network

• "Listening matrix" $W(\text{sized } N \times N)$:

$$w_{i,j} = \frac{l_{i,j}}{\sum_{k=1}^{N} l_{i,k}}$$

• Degree $d_j = \sum_{i=1}^{N} w_{i,j}$: how influential j is in the network

• Row sum:
$$\sum_{i=1}^{N} w_{i,j} = 1 \quad \forall i$$

• $w_{i,i} = 1$ if "you only have yourself as a friend"

Back

$\begin{array}{c} \text{Motivation} \\ \text{0000} \end{array}$	Empirical identification	Model 0000000	Counterfactuals 00000	Summary 0	Appendix 000000000	References
Why "	naive"?					

- Ideally: weights = true precision
- Realistically: bounded rationality
 - not knowing perfectly friend ties: who are friends' friends
 - not knowing perfectly the precision of friend's signals
 - i.e. treating them as independent signals
- Experimental evidence: (Enke and Zimmermann, 2019; Chandrasekhar et al., 2020)
- Consequence: "persuasion bias" (DeMarzo et al., 2003):
 - inefficiency due to dominant weights of the influencers
 - **no "wisdom of crowds"**: the converged belief (if any) of the society is not the "truth" starting from different priors
 - persistent **disagreements** in beliefs

Motivation 0000	Empirical identification	Model 0000000	$\begin{array}{c} \text{Counterfactuals} \\ \text{00000} \end{array}$	Summary 0	Appendix 0000000000	References

Social network and beliefs

- Key statistic: the dispersion of the degrees (always mean 1)
 - Zero dispersion (social autarky, egalitarian, or symmetric influence)

$$d_i = 1 \forall i$$

- Non-zero dispersion (W being asymmetric)
 - Belief multiplier effect: following an exogenous shock to belief of each node, average belief response is greater than the shock **Details**
- Similar mechanism in the production networks (Acemoglu et al., 2012) or social multiplier via peer effects (Manski, 1993)

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	00000000000	

Belief multiplier effect

 $\bullet\,$ To a single node j

$$MP_{t+1|t}^{j} = \frac{\delta \tilde{\psi}_{t+v}^{av} / \delta \tilde{\psi}_{j,t}(\lambda \neq 0)}{\delta \tilde{\psi}_{t+v}^{av} / \delta \tilde{\psi}_{j,t}(\lambda = 0)} = (\frac{d_j}{1-k} - 1)\lambda + 1$$

•
$$MP_{t+1|t}^j > 1$$
 if $d_j + k > 1$ and $\lambda > 0$

• To all the nodes

$$MP_{t+v|t} = \frac{1}{N} \sum_{j=1}^{N} MP_{t+v|t}^{j} = \Theta^{v}$$
$$\Theta = 1 + \frac{k\lambda}{1-k}$$

•
$$MP_{t+v|t} > 1$$
 $\forall 0 < k < 0$ and $\lambda > 0$

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	00000000000	

Consumer's problem

- N agents/consumers/nodes: i = 1, 2...N
- Utility

$$\max_{\{c_{i,c,t},c_{i,n,t}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_{i,t})$$
$$u(c) = \frac{c^{1-\rho}}{1-\rho}$$
$$c_{i,t} = (\underbrace{\tau_{i,t}}_{\text{taste shifter}} \phi_c c_{i,c,t}^{\frac{\epsilon-1}{\epsilon}} + (1-\phi_c) c_{i,n,t}^{\frac{\epsilon-1}{\epsilon}})^{\frac{\epsilon}{\epsilon-1}}$$
• Budget/borrowing constraints
$$c_{i,t} + a_{i,t} = \underbrace{m_{i,t}}_{\text{cash in hand}} = \underbrace{y_{i,t}}_{\text{labor income}} + \underbrace{a_{i,t-1}(1+r)}_{\text{bank balance}}$$

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	00000000000	

The pandemic

Local infection:

Back

MotivationEmpirical identificationModelCounterfactualsSummaryAppendixReferences000000000000000000000000000000000000

The pandemic and the economy

• Income:

$$y_{i,t} = o_{i,t} z_{i,t}$$

$$ln(o_{i,t}) = ln(o_{i,t-1}) + \underbrace{v_{i,t}}_{\text{permanent}} \quad v_{i,t} \sim N(-\frac{\sigma_v^2}{2}, \sigma_v^2)$$

$$ln(z_{i,t}) = \underbrace{\alpha_z}_{\leq 0} \underbrace{\xi_{i,t}}_{\text{transitory}} \quad \zeta_{i,t} \sim N(-\frac{\sigma_\tau^2}{2}, \sigma_\tau^2)$$

• Taste shifter:

$$ln(\tau_{i,t}) = \overbrace{\alpha_s}^{\leq 0} \boldsymbol{\xi}_{i,t} + \mu_{i,t} \quad \mu_{i,t} \sim N(-\frac{\sigma_{\mu}^2}{2}, \sigma_{\mu}^2)$$

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	0000000000	

Optimal consumption

$$V_{i,t}(m_{i,t}, o_{i,t}, \underbrace{\tilde{\psi}_{i,t}}_{\text{Perception}}, \tau_{i,t}) = \max_{\{c_{i,c,t}, c_{i,n,t}\}} u(c(c_{i,c,t}, c_{i,n,t})) + \beta \tilde{E}_{i,t} V_{i,t+1}(m_{i,t+1}, o_{i,t+1}, \psi_{t+1}, \tau_{i,t+1})$$

• Inter-temporal:

$$V_{i,t}(m_{i,t}, o_{i,t}, \tilde{\psi}_{i,t}) = \max_{\{c_{i,t}\}} \quad u(c_{i,t}) + \beta \tilde{E}_{i,t} V_{i,t+1}(m_{i,t+1}, o_{i,t+1}, \psi_{t+1})$$

• Intra-temporal allocation:

$$\frac{\tau_{i,t}\phi_c}{1-\phi_c}(\frac{c_{i,c,t}}{c_{i,n,t}})^{-\frac{1}{\epsilon}} = 1$$

Motivation	Empirical identification	Model	Counterfactuals	Summary	Appendix	References
0000	000000000	0000000	00000	0	000000000	

Calibration

Parameters	Value	External source/restriction				
		Preference				
ϕ_c	0.41	Estimated from CEX				
ϵ	0.75	Estimated from CEX				
ho	2	Standard in literature				
β	$0.99^{1/4}$	Standard in literature				
1+r	$1.02^{1/4}$	Standard in literature				
	Stochastic Income/Preference Shocks					
σ_v^2	$0.01 \times 4/11$	Match pre-pandemic consumption inequality				
σ_{ζ}^2	0.014,	Match pre-pandemic consumption inequality				
σ_{μ}^{2}	2.90	Match pre-pandemic sub-category consumption				
COVID19 Dynamics						
σ_{θ}	0.121	County panel estimation of COVID19 cases				
σ_η	0.209	County Panel estimation of COVID19 cases				
Elasticity of Income/Preference to Infection						
α_z	-0.1	Externally estimated				
α_s	-0.2	Match the subcategory consumption response				

- Acemoglu, D., Carvalho, V. M., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. *Econometrica*, 80(5):1977–2016.
- Agarwal, S., Liu, C., and Souleles, N. S. (2007). The reaction of consumer spending and debt to tax rebates: Evidence from consumer credit data. *Journal of Political Economy*, 115(6):986–1019.
- Bailey, M., Cao, R., Kuchler, T., and Stroebel, J. (2018a). The economic effects of social networks: Evidence from the housing market. *Journal of Political Economy*, 126(6):2224–2276.
- Bailey, M., Cao, R., Kuchler, T., Stroebel, J., and Wong, A. (2018b). Social connectedness: Measurement, determinants, and effects. *Journal of Economic Perspectives*, 32(3):259–280.
- Bailey, M., Dávila, E., Kuchler, T., and Stroebel, J. (2019). House price beliefs and mortgage leverage choice. *The Review* of Economic Studies, 86(6):2403–2452.

- - Bailey, M., Johnston, D. M., Koenen, M., Kuchler, T., Russel, D., and Stroebel, J. (2020). Social networks shape beliefs and behavior: evidence from social distancing during the COVID-19 pandemic. *NBER working paper*.
 - Bayer, P., Mangum, K., and Roberts, J. W. (2021). Speculative fever: Investor contagion in the housing bubble. *American Economic Review*, 111(2):609–51.
 - Binder, C. and Makridis, C. A. (2020). Stuck in the Seventies: Gas Prices and Macroeconomic Expectation. *Review of Economics & Statistics, R&R.*
 - Bordalo, P., Gennaioli, N., Ma, Y., and Shleifer, A. (2020). Overreaction in macroeconomic expectations. American Economic Review.
 - Bursztyn, L., Ederer, F., Ferman, B., and Yucghtman, N. (2014). Understanding mechanisms underlying peer effects: Evidence from a field experiment. *Econometrica*, 82(4):1273–1301.

MotivationEmpirical identificationModelCounterfactualsSummaryAppendixReferences00

- Carroll, C. D. (2003). Macroeconomic Expectations of Households and Professional Forecasters. *Quarterly Journal* of Economics, 118(1):269–298.
- Chandrasekhar, A. G., Larreguy, H., and Xandri, J. P. (2020). Testing models of social learning on networks: Evidence from two experiments. *Econometrica*, 88(1):1–32.
- Cogley, T. and Sargent, T. J. (2008). The market price of risk and the equity premium: A legacy of the Great Depression. *Journal of Monetary Economics*, 55(3):454–476.
- Coibion, O. and Gorodnichenko, Y. (2015). Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts. *American Economic Review*, 105(8):2644–2678.
- De Giorgi, G., Frederiksen, A., and Pistaferri, L. (2020). Consumption network effects. *The Review of Economic Studies*, 87(1):130–163.
- DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121.

DeMarzo, P. M., Vayanos, D., and Zwiebel, J. (2003). Persuasion bias, social influence, and unidimensional opinions. *The Quarterly journal of economics*, 118(3):909–968.

- Di Maggio, M., Kermani, A., Keys, B. J., Piskorski, T., Ramcharan, R., Seru, A., and Yao, V. (2017). Interest rate pass-through: Mortgage rates, household consumption, and voluntary deleveraging. *American Economic Review*, 107(11):3550–3588.
- Enke, B. and Zimmermann, F. (2019). Correlation neglect in belief formation. *The Review of Economic Studies*, 86(1):313–332.
- Fowler, J. H. and Christakis, N. A. (2008). Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. *BMJ*, 337.
- Fuster, A., Kaplan, G., and Zafar, B. (2018). Wht would you do with \$500? Spending responses to gains, losses, news and loans. *NBER working paper*, Review of Economic Studies, R&R.

MotivationEmpirical identificationModelCounterfactualsSummaryAppendixReferences00

Giuliano, P. and Spilimbergo, A. (2014). Growing up in a Recession. *Review of Economic Studies*, 81(2):787–817.

Gourinchas, P.-O. and Parker, J. A. (2002). Consumption over the life cycle. *Econometrica*, 70(1):47–89.

- Heffetz, O. (2011). A test of conspicuous consumption: Visibility and income elasticities. *Review of Economics and Statistics*, 93(4):1101–1117.
- Hong, H., Kubik, J. D., and Stein, J. C. (2004). Social interaction and stock-market participation. *The journal of finance*, 59(1):137–163.
- Hong, H., Kubik, J. D., and Stein, J. C. (2005). Thy neighbor's portfolio: Word-of-mouth effects in the holdings and trades of money managers. *The Journal of Finance*, 60(6):2801–2824.
- Johnson, D. S., Parker, J. A., and Souleles, N. S. (2006).
 Household expenditure and the income tax rebates of 2001.
 American Economic Review, 96(5):1589–1610.

- Kramer, A. D. I., Guillory, J. E., and Hancock, J. T. (2014). Experimental evidence of massive-scale emotional contagion through social networks. *Proceedings of the National Academy of Sciences*, 111(24):8788–8790.
- Kuchler, T. and Zafar, B. (2019). Personal experiences and expectations about aggregate outcomes. *Journal of Finance*, 74(5):2491–2542.
- Makridis, C. (2020). The Effect of Economic Sentiment on Consumption: Evidence from Social Networks. SSRN working paper.
- Makridis, C. A. and McGuire, E. (2020). Refined by Fire: The Great Depression and Entrepreneurship. *Working paper*.
- Malmendier, U. and Nagel, S. (2011). Depression babies: Do macroeconomic experiences affect risk taking? Quarterly Journal of Economics, 126(1):373–416.
- Malmendier, U. and Nagel, S. (2016). Learning from inflation experiences. Quarterly Journal of Economics, 131(1):53–87.

MotivationEmpirical identificationModelCounterfactualsSummaryAppendixReferences000

Malmendier, U., Pouzo, D., and Vanasco, V. (2018). Investor experiences and financial market dynamics. NBER Working Paper 24697.

- Malmendier, U. and Shen, L. S. (2018). Scarred consumption. *NBER working paper*.
- Mankiw, N. G. and Reis, R. (2002). Sticky information versus sticky prices: a proposal to replace the new keynesian phillips curve. *The Quarterly Journal of Economics*, 117(4):1295–1328.
- Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. *The review of economic studies*, 60(3):531–542.
- Manski, C. F. (2000). Economic analysis of social interactions. Journal of economic perspectives, 14(3):115–136.
- Moretti, E. (2011). Social learning and peer effects in consumption: Evidence from movie sales. *Review of Economic Studies*, 78(1):356–393.

- Pistaferri, L. (2001). Superior information, income shocks, and the permanent income hypothesis. *Review of Economics and Statistics*, 83(3):465–476.
- Sims, C. A. (2003). Implications of rational inattention. Journal of monetary Economics, 50(3):665–690.
- Souleles, N. S. (1999). The response of household consumption to income tax refunds. *American Economic Review*, 89(4):947–958.
- Woodford, M. (2001). Imperfect common knowledge and the effects of monetary policy. Technical report, National Bureau of Economic Research.
- Zeldes, S. P. (1989). Consumption and liquidity constraints: An empirical investigation. *Journal of Political Economy*, 97(2):305–346.