Macroeconomic Fluctuations With HANK & SAM: An Analytical Approach

Author: Morten O. Ravn (UCL), Vincent Sterk (UCL)

Discussant: Tao Wang (JHU)

Macro reading group at University of Pennsylvania

September 13, 2021

Roadmap

Introduction

Model

Comments

Motivation

- Idiosyncratic income risks are exogenous in standard incomplete market macro models, i.e. HANK
 - assumed to follow some stochastic process
- Search and match (SAM) frictions: one source of endogenous idiosyncratic risks
 - unemployment risk and labor market transitions determined in equilibrium
 - it may be procyclical or countercyclical
- HANK + SAM combined?
 - in general, complex
 - under certain assumptions, analytically approachable

Contribution of the paper

- A tractable HANK+SAM model
- Cyclicality of income risks and macro outcomes
 - a macro amplification mechanism if counter-cyclical (more empirically plausible)
- Determinacy property of the system
 - possibly an "unemployment trap" due to additional precautionary saving motive
 - Taylor principle is insufficient to eliminate local indeterminacy

Roadmap

Introduction

Model

Comment

Model summary

HANK + SAM a la DMP

- Households choose c, bond holding b and equity holding h
 - depending on the productivity $z \in \{0,1\}$ or emp status $\{n,u\}$
 - \blacksquare uninsured unemp risks: separation rate ω and job finding rate η
 - borrowing constraints proportional to income: $b \ge -\psi zwn$
 - \blacksquare no short selling h > 0
- Firms set the price P_i and post vacancies v_i
 - nominal rigidity a la Rotemberg (1982)
 - \blacksquare cost per vacancy: κ
 - v cannot be negative
- Macro level
 - \blacksquare job-finding rate η /vacancy filling rate q from a matching function
 - \blacksquare wage w determined via Nash bargaining
 - zero net supply of bonds
 - \blacksquare exogenous aggregate productivity A_t

Value functions of household

Employed worker: z = 1, n

$$V^{z=1,n}(x,X) = \max_{c,x'} \frac{c^{1-\mu} - 1}{1-\mu} - \zeta$$

+ $\beta \mathbb{E}[(1 - \omega(1 - \eta'))V^{z=1,n}(x',X') + \omega(1 - \eta')V^{z=1,u}(x',X')]$

- $x = [b_{-1}, h_{-1}]$
- X aggregate asset state

Value functions of households

Unemployed worker: z = 1, u

$$\begin{split} V^{z=1,u}(x,X) &= \max_{c,x'} \quad \frac{c^{1-\mu}-1}{1-\mu} \\ &+ \beta \mathbb{E}[\eta' V^{z=1,n}(x',X') + (1-\eta') V^{z=1,u}(x',X')] \end{split}$$

Value functions of households

Capitalists: z = 0

$$V^{z=0}(x,X) = \max_{c,x'} \frac{c^{1-\mu} - 1}{1-\mu} + \beta \mathbb{E}[V^{z=0}(x',X')]$$

The general solution

- a recursive equilibrium
- individual optimization under perceived laws of aggregate variables
 - \blacksquare the policy functions (c, b, h) for households
 - the policy functions (v, P) for firms
- market clearing of goods, bond, equity and labor market
- aggregate labor market evolves according to the matching function
- the wage solves the Nash bargaining problem
- the central bank implements the policy rule
- consistency: the actual and perceived laws coincide

Assumptions for an analytical solution

- In general, the distribution of workers in asset holdings and emp status is not a trivial object
- To simplify the solutions, assume the two types of agents have the access to one respective asset market
 - lacksquare "capitalists": z=0, don't participate in labor market but participate in equity market
 - workers": z=1, participate in the labor market but have no access to the equity market

Intuition behind the analytical solution (in steady state (SS))

- identical c within each type and emp status
- real rate below $1/\beta$ because of the precautionary saving motive
- ullet all types hold zero b and consume current income
 - "capitalists": better to hold equity
 - unemployed "workers": strong incentive to borrow instead of save, but constrained
 - employed "workers": want bonds for precautionary saving motive but willingly hold zero due to zero net supply
- Euler equation only holds for employed workers
 - capitalists and unemployed workers are both constrained
- goods/asset market clearing trivially holds

Bond demand schedules in steady state

FIGURE 1. Illustration of steady-state bond demand schedules.

Implications of HANK&SAM

An endogenous income risk channel

$$c_{n,s}^{-\mu} = \beta \mathbb{E}_s \frac{R_s}{\Pi_{s+1}} c_{n,s+1}^{-\mu} \left[1 + \underbrace{\omega \left(1 - \eta_{s+1} \right) \left(\left(\vartheta / w_{s+1} \right)^{-\mu} - 1 \right)}_{\text{precautionary saving motive}} \right]$$

- Can be pro-cyclical or counter-cyclical depending on the competing force between
 - risk of unemployment
 - loss of earnings given job loss
- Determinacy of the model
 - Unemployment trap
 - Taylor principle may not be enough

Roadmap

Introduction

Mode

Comments

On the paper

- The key of the tractability is to make agents hands-to-mouth, therefore no need to track asset distributions
 - Or put it differently, make all types except one constrained
- Combining incomplete market macro and SAM is a promising field
- I anticipate to see quantitative models of HANK & SAM soon
- More research is needed for understanding the source of income risks, especially earning risks